Pharmacological Advances in Targeting Neuroinflammation for Alzheimer’s Disease

Published: January 9, 2026

Authors

Kunal

Keywords
Alzheimer's disease, Neuroinflammation, Pharmacological interventions, Anti-inflammatory therapies, Drug development

Abstract

Background: Alzheimers disease AD is a progressive neurodegenerative disorder characterized by synaptic dysfunction neuronal loss and cognitive decline. Increasing evidence identifies chronic neuroinflammation as a central pathogenic mechanism in AD driven by amyloid beta accumulation.

Purpose: The purpose of this review is to critically examine recent pharmacological advances targeting neuroinflammatory mechanisms in AD with emphasis on molecular signaling pathways glial activation dynamics and emerging disease modifying therapeutic strategies.

Methods: A comprehensive literature survey was conducted using PubMed Web of Science and Google Scholar to identify relevant preclinical and clinical studies focusing on neuroinflammation targeted interventions in AD. Evidence related to cytokine and eicosanoid signaling inflammasome activation microglial immunoreceptors nonsteroidal anti inflammatory drugs biologics and nanotechnology based drug delivery systems was systematically analyzed.

Results: Mechanistic studies demonstrate that pharmacological modulation of microglial phenotypes inhibition of pro inflammatory mediators TNF alpha IL 1 IL 6 and targeting pathways such as NF kappa B NLRP3 inflammasome p38 MAPK JAK STAT and TREM2 can attenuate neuroinflammatory cascades and reduce amyloid beta and tau associated neurotoxicity. However clinical translation remains inconsistent due to limited blood brain barrier permeability off target toxicity and patient heterogeneity. Advanced nanocarrier based delivery systems and intranasal strategies show promise in improving brain bioavailability and therapeutic precision.

Conclusion: Targeting neuroinflammation represents a mechanistically robust avenue for disease modification in AD. Future therapeutic success will likely depend on integrated multimodal strategies combining precise inflammatory pathway modulation with advanced brain targeted drug delivery and biomarker guided patient stratification.

References

  • Aalinkeel, R., Kutscher, H. L., Singh, A., Cwiklinski, K., Khechen, N., & Schwartz, S. A. (2018). Neuroprotective effects of a biodegradable poly(lactic-co-glycolic acid)-ginsenoside Rg3 nanoformulation: A potential nanotherapy for Alzheimer’s disease. Journal of Drug Targeting, 26, 182–193. https://doi.org/10.1080/1061186X.2017.1354002
  • Abozaid, O. A. R., Sallam, M. W., El-Sonbaty, S., Aziza, S., Emad, B., & Ahmed, E. S. A. (2022). Resveratrol-selenium nanoparticles alleviate neuroinflammation and neurotoxicity in a rat model of Alzheimer’s disease by regulating Sirt1/miRNA-134/GSK3β expression. Biological Trace Element Research, 200, 5104–5114. https://doi.org/10.1007/s12011-021-03073-7
  • Ahmad, M. H., Fatima, M., & Mondal, A. C. (2019). Influence of microglia and astrocyte activation in the neuroinflammatory pathogenesis of Alzheimer’s disease: Rational insights for the therapeutic approaches. Journal of Clinical Neuroscience, 59, 6–11. https://doi.org/10.1016/j.jocn.2018.10.034
  • Alhakamy, N. A., Aljehani, E. A., Abdel-Naim, A. B., Shaik, R. A., Iqubal, M. K., & Asfour, H. Z. (2024). Development, optimization, and evaluation of empagliflozin nanoemulsion for the management of neuroinflammation-associated Alzheimer’s disease. Journal of Drug Delivery Science and Technology, 93, 105425. https://doi.org/10.1016/j.jddst.2024.105425
  • Al-Kuraishy, H. M., Sulaiman, G. M., Mohammed, H. A., Saad, H. M., Al-Gareeb, A. I., & Albuhadily, A. K. (2025). Targeting the JAK/STAT3/SOCS signaling pathway in Alzheimer’s disease. Inflammopharmacology, 33, 2951–2962. https://doi.org/10.1007/s10787-025-01796-w
  • Alshaebi, F., Sciortino, A., & Kayed, R. (2025). The role of glial cell senescence in Alzheimer’s disease. Journal of Neurochemistry, 169. https://doi.org/10.1111/jnc.70051
  • Alzheimer’s Association. (2019). 2019 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia, 15, 321–387. https://doi.org/10.1016/j.jalz.2019.01.010
  • Arranz, A. M., & De Strooper, B. (2019). The role of astroglia in Alzheimer’s disease: Pathophysiology and clinical implications. The Lancet Neurology, 18, 406–414. https://doi.org/10.1016/S1474-4422(18)30490-3
  • Attia, R. T., Fahmy, S. A., Abdel-Latif, R. T., Ateyya, H., Fayed, T. W., & El-Abhar, H. S. (2025). Cationic lipid-based nanoparticles-formulated artesunate as a neurotherapeutic agent in Alzheimer’s disease: Targeting inflammasome activation and pyroptosis pathway. Journal of Drug Delivery Science and Technology, 107, 106803. https://doi.org/10.1016/j.jddst.2025.106803
  • Bagyinszky, E., Giau, V. V., Shim, K., Suk, K., An, S. S. A., & Kim, S. (2017). Role of inflammatory molecules in the Alzheimer’s disease progression and diagnosis. Journal of the Neurological Sciences, 376, 242–254. https://doi.org/10.1016/j.jns.2017.03.031
  • Belarbi, K., Jopson, T., Tweedie, D., Arellano, C., Luo, W., & Greig, N. H. (2012). TNF-α protein synthesis inhibitor restores neuronal function and reverses cognitive deficits induced by chronic neuroinflammation. Journal of Neuroinflammation, 9, 23. https://doi.org/10.1186/1742-2094-9-23
  • Bose, S., & Cho, J. (2013). Role of chemokine CCL2 and its receptor CCR2 in neurodegenerative diseases. Archives of Pharmacal Research, 36, 1039–1050. https://doi.org/10.1007/s12272-013-0161-z
  • Bradshaw, E. M., Chibnik, L. B., Keenan, B. T., Ottoboni, L., Raj, T., & Tang, A. (2013). CD33 Alzheimer’s disease locus: Altered monocyte function and amyloid biology. Nature Neuroscience, 16, 848–850. https://doi.org/10.1038/nn.3435
  • Bronzuoli, M. R., Iacomino, A., Steardo, L., & Scuderi, C. (2016). Targeting neuroinflammation in Alzheimer disease. Journal of Inflammation Research, 9, 199–208. https://doi.org/10.2147/JIR.S86958
  • Cohen, J., & Torres, C. (2019). Astrocyte senescence: Evidence and significance. Aging Cell, 18. https://doi.org/10.1111/acel.12937
  • Daborg, J., Andreasson, U., Pekna, M., Lautner, R., Hanse, E., & Minthon, L. (2012). Cerebrospinal fluid levels of complement proteins C3, C4 and CR1 in Alzheimer’s disease. Journal of Neural Transmission, 119, 789–797. https://doi.org/10.1007/s00702-012-0797-8
  • Davies, P. M. A. (1976). Selective loss of central cholinergic neurons in Alzheimer’s disease. The Lancet, 308, 1403.
  • Dhapola, R., Hota, S. S., Sarma, P., Bhattacharyya, A., Medhi, B., & Reddy, D. H. (2021). Recent advances in molecular pathways and therapeutic implications targeting neuroinflammation for Alzheimer’s disease. Inflammopharmacology, 29, 1669–1681. https://doi.org/10.1007/s10787-021-00889-6
  • Dodel, R., Neff, F., Noelker, C., Pul, R., Du, Y., & Bacher, M. (2010). Intravenous immunoglobulins as a treatment for Alzheimer’s disease. Drugs, 70, 513–528. https://doi.org/10.2165/11533070-000000000-00000
  • Fiala, M., Terrando, N., & Dalli, J. (2015). Specialized pro-resolving mediators from omega-3 fatty acids improve amyloid-β phagocytosis and regulate inflammation in patients with minor cognitive impairment. Journal of Alzheimer’s Disease, 48, 293–301. https://doi.org/10.3233/JAD-150367
  • Fonseca-Santos, B., Chorilli, M., & Gremião, M. P. D. (2015). Nanotechnology-based drug delivery systems for the treatment of Alzheimer disease. International Journal of Nanomedicine, 4981. https://doi.org/10.2147/IJN.S87148
  • Ganguly, U., Kaur, U., Chakrabarti, S. S., Sharma, P., Agrawal, B. K., & Saso, L. (2021). Oxidative stress, neuroinflammation, and NADPH oxidase: Implications in the pathogenesis and treatment of Alzheimer’s disease. Oxidative Medicine and Cellular Longevity, 2021. https://doi.org/10.1155/2021/7086512
  • Gomez-Arboledas, A., Carvalho, K., Balderrama-Gutierrez, G., Chu, S.-H., Liang, H. Y., & Schartz, N. D. (2022). C5aR1 antagonism alters microglial polarization and mitigates disease progression in a mouse model of Alzheimer’s disease. Acta Neuropathologica Communications, 10, 116. https://doi.org/10.1186/s40478-022-01416-6
  • Griciuc, A., Serrano-Pozo, A., Parrado, A. R., Lesinski, A. N., Asselin, C. N., Mullin, K., et al. (2013). Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron, 78, 631–643. https://doi.org/10.1016/j.neuron.2013.04.014
  • Guerreiro, R., Wojtas, A., Bras, J., Carrasquillo, M., Rogaeva, E., & Majounie, E. (2013). TREM2 variants in Alzheimer’s disease. The New England Journal of Medicine, 368, 117–127. https://doi.org/10.1056/NEJMoa1211851
  • Heneka, M. T., Carson, M. J., Khoury, J. E., Landreth, G. E., Brosseron, F., Feinstein, D. L., et al. (2015). Neuroinflammation in Alzheimer’s disease. The Lancet Neurology, 14, 388–405. https://doi.org/10.1016/S1474-4422(15)70016-5
  • Hoskin, J. L. (2019). α7 nicotinic acetylcholine receptor agonists for the treatment of Alzheimer’s dementia: An update. Nicotine & Tobacco Research, 21, 370–376.
  • Hull, E. E., Montgomery, M. R., & Leyva, K. J. (2016). HDAC inhibitors as epigenetic regulators of the immune system: Impacts on cancer therapy and inflammatory diseases. BioMed Research International, 2016, 1–15. https://doi.org/10.1155/2016/8797206
  • Illes, P., Rubini, P., Huang, L., & Tang, Y. (2019). The P2X7 receptor: A new therapeutic target in Alzheimer’s disease. Expert Opinion on Therapeutic Targets, 23, 165–176. https://doi.org/10.1080/14728222.2019.1575811
  • Jack, C. R., Bennett, D. A., Blennow, K., Carrillo, M. C., Dunn, B., & Haeberlein, S. B. (2018). NIA–AA research framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s & Dementia, 14, 535–562. https://doi.org/10.1016/j.jalz.2018.02.018
  • Jiang, H., Gong, T., & Zhou, R. (2020). The strategies of targeting the NLRP3 inflammasome to treat inflammatory diseases (pp. 55–93). https://doi.org/10.1016/bs.ai.2019.11.003
  • Jung, Y. J., Tweedie, D., Scerba, M. T., & Greig, N. H. (2019). Neuroinflammation as a factor of neurodegenerative disease: Thalidomide analogs as treatments. Frontiers in Cell and Developmental Biology, 7. https://doi.org/10.3389/fcell.2019.00313
  • Jurcău, M. C., Andronie-Cioara, F. L., Jurcău, A., Marcu, F., Ţiț, D. M., Pașcalău, N., & Nistor-Cseppentö, D. C. (2022). The link between oxidative stress, mitochondrial dysfunction and neuroinflammation in the pathophysiology of Alzheimer’s disease: Therapeutic implications and future perspectives. Antioxidants, 11, 2167. https://doi.org/10.3390/antiox11112167
  1. C. S., Kakoty, V., Krishna, K. V., Dubey, S. K., Chitkara, D., & Taliyan, R. (2021). Neuroprotective efficacy of co-encapsulated rosiglitazone and vorinostat nanoparticle on streptozotocin-induced mice model of Alzheimer disease. ACS Chemical Neuroscience, 12, 1528–1541. https://doi.org/10.1021/acschemneuro.1c00022
  2. C. S., Kakoty, V., Marathe, S., Chitkara, D., & Taliyan, R. (2021). Exploring the neuroprotective potential of rosiglitazone embedded nanocarrier system on streptozotocin-induced mice model of Alzheimer’s disease. Neurotoxicity Research, 39, 240–255. https://doi.org/10.1007/s12640-020-00258-1
  • Kamboh, M. I. (2018). A brief synopsis on the genetics of Alzheimer’s disease. Current Genetic Medicine Reports, 6, 133–135. https://doi.org/10.1007/s40142-018-0155-8
  • Karthivashan, G., Ganesan, P., Park, S.-Y., Kim, J.-S., & Choi, D.-K. (2018). Therapeutic strategies and nano drug delivery applications in management of ageing Alzheimer’s disease. Drug Delivery, 25, 307–320. https://doi.org/10.1080/10717544.2018.1428243
  • Khalin, I., Alyautdin, R., Ismail, N. M., Haron, M. H., & Kuznetsov, D. (2014). Nanoscale drug delivery systems and the blood–brain barrier. International Journal of Nanomedicine, 795. https://doi.org/10.2147/IJN.S52236
  • Kim, H.-S., & Suh, Y.-H. (2009). Minocycline and neurodegenerative diseases. Behavioural Brain Research, 196, 168–179. https://doi.org/10.1016/j.bbr.2008.09.040
  • Kitazawa, M., Cheng, D., Tsukamoto, M., Koike, M. A., Wes, P. D., Vasilevko, V., Cribbs, D. H., & LaFerla, F. M. (2011). Blocking IL-1 signaling rescues cognition, attenuates tau pathology, and restores neuronal β-catenin pathway function in an Alzheimer’s disease model. Journal of Immunology, 187, 6539–6549.
  • Klyucherev, T. O., Olszewski, P., Shalimova, A. A., Chubarev, V. N., Tarasov, V. V., & Attwood, M. M. (2022). Advances in the development of new biomarkers for Alzheimer’s disease. Translational Neurodegeneration, 11, 25. https://doi.org/10.1186/s40035-022-00296-z
  • Kumar, H., Chakrabarti, A., Sarma, P., Modi, M., Banerjee, D., & Radotra, B. D. (2023). Novel therapeutic mechanism of action of metformin and its nanoformulation in Alzheimer’s disease and role of AKT/ERK/GSK pathway. European Journal of Pharmaceutical Sciences, 181, 106348. https://doi.org/10.1016/j.ejps.2022.106348
  • Kumar, H., Mishra, G., Sharma, A. K., Gothwal, A., Kesharwani, P., & Gupta, U. (2018). Intranasal drug delivery: A non-invasive approach for the better delivery of neurotherapeutics. Pharmaceutical Nanotechnology, 5. https://doi.org/10.2174/2211738505666170515113936
  • Kushawaha, S. K., Ashawat, M. S., Arora, R., & Baldi, A. (2025). Auranofin-loaded PLGA nanoparticles for neuroprotection against aluminium-induced Alzheimer’s disease. Current Pharmaceutical Design, 31, 1402–1415. https://doi.org/10.2174/0113816128336703241202182209
  • Kushawaha, S. K., Ashawat, M. S., & Baldi, A. (2024). Auranofin-loaded PLGA nanoparticles alleviate cognitive deficit induced by streptozotocin in rats model: Modulation of oxidative stress, neuroinflammatory markers, and neurotransmitters. Naunyn-Schmiedeberg’s Archives of Pharmacology, 397, 10031–10047. https://doi.org/10.1007/s00210-024-03253-x
  • Landreth, G., Jiang, Q., Mandrekar, S., & Heneka, M. (2008). PPARγ agonists as therapeutics for the treatment of Alzheimer’s disease. Neurotherapeutics, 5, 481–489. https://doi.org/10.1016/j.nurt.2008.05.003
  • Li, R.-Y., Qin, Q., Yang, H.-C., Wang, Y.-Y., Mi, Y.-X., & Yin, Y.-S. (2022). TREM2 in the pathogenesis of AD: A lipid metabolism regulator and potential metabolic therapeutic target. Molecular Neurodegeneration, 17, 40. https://doi.org/10.1186/s13024-022-00542-y
  • Mafi, J. N., Leng, M., Arbanas, J. C., Tseng, C. H., Damberg, C. L., & Sarkisian, C. (2022). Estimated annual spending on aducanumab in the US Medicare program. JAMA Health Forum, 3, 214495. https://doi.org/10.1001/jamahealthforum.2021.4495
  • Mahaman, Y. A. R., Embaye, K. S., Huang, F., Li, L., Zhu, F., & Wang, J.-Z. (2022). Biomarkers used in Alzheimer’s disease diagnosis, treatment, and prevention. Ageing Research Reviews, 74, 101544. https://doi.org/10.1016/j.arr.2021.101544
  • Mahdiabadi, S., Momtazmanesh, S., Perry, G., & Rezaei, N. (2022). Immune modulations and immunotherapies for Alzheimer’s disease: A comprehensive review. Reviews in the Neurosciences, 33, 365–381. https://doi.org/10.1515/revneuro-2021-0092
  • McGinley, M. P., & Cohen, J. A. (2021). Sphingosine 1-phosphate receptor modulators in multiple sclerosis and other conditions. The Lancet, 398, 1184–1194. https://doi.org/10.1016/S0140-6736(21)00244-0
  • Merighi, S., Nigro, M., Travagli, A., & Gessi, S. (2022). Microglia and Alzheimer’s disease. International Journal of Molecular Sciences, 23, 12990. https://doi.org/10.3390/ijms232112990
  • Nadeem, M., Majid, H., Ansari, M. D., Ahmad, F. J., Parvez, S., & Akhtar, M. (2025). Development and optimization of piracetam- and shatavarin IV-loaded nanoemulsion for Alzheimer’s disease therapy: In silico and experimental analysis. ACS Omega, 10, 9132–9153. https://doi.org/10.1021/acsomega.4c09072
  • Oesterling, B. M., Gulati, A., & Joshi, M. D. (2014). Nanocarrier-based approaches for treatment and detection of Alzheimer’s disease. Journal of Nanoscience and Nanotechnology, 14, 137–156. https://doi.org/10.1166/jnn.2014.8906
  • Olloquequi, J., Ettcheto, M., Cano, A., Sanchez-López, E., Carrasco, M., & Espinosa, T. (2022). Impact of new drugs for therapeutic intervention in Alzheimer’s disease. Frontiers in Bioscience–Landmark, 27. https://doi.org/10.31083/j.fbl2705146
  • Pan, Q., Ban, Y., & Xu, L. (2021). Silibinin-albumin nanoparticles: Characterization and biological evaluation against oxidative stress-stimulated neurotoxicity associated with Alzheimer’s disease. Journal of Biomedical Nanotechnology, 17, 1123–1130. https://doi.org/10.1166/jbn.2021.3038
  • Piazza, F., Greenberg, S. M., Savoiardo, M., Gardinetti, M., Chiapparini, L., & Raicher, I. (2013). Anti–amyloid β autoantibodies in cerebral amyloid angiopathy-related inflammation: Implications for amyloid-modifying therapies. Annals of Neurology, 73, 449–458. https://doi.org/10.1002/ana.23857
  • Prins, N. D., Harrison, J. E., Chu, H.-M., Blackburn, K., Alam, J. J., & Scheltens, P. (2021). A phase 2 double-blind placebo-controlled 24-week treatment clinical study of the p38 alpha kinase inhibitor neflamapimod in mild Alzheimer’s disease. Alzheimer’s Research & Therapy, 13, 106. Querfurth, H. W., & LaFerla, F. M. (2010). Alzheimer’s disease. The New England Journal of Medicine, 362, 329–344. https://doi.org/10.1056/NEJMra0909142
  • Rathore, N., Ramani, S. R., Pantua, H., Payandeh, J., Bhangale, T., & Wuster, A. (2018). Paired immunoglobulin-like type 2 receptor alpha G78R variant alters ligand binding and confers protection to Alzheimer’s disease. PLoS Genetics, 14, 1007427. https://doi.org/10.1371/journal.pgen.1007427
  • Rivers-Auty, J., Mather, A. E., Peters, R., Lawrence, C. B., & Brough, D. (2020). Anti-inflammatories in Alzheimer’s disease: Potential therapy or spurious correlate? Brain Communications, 2. https://doi.org/10.1093/braincomms/fcaa109
  • Rojas-Gutierrez, E., Muñoz-Arenas, G., Treviño, S., Espinosa, B., Chavez, R., & Rojas, K. (2017). Alzheimer’s disease and metabolic syndrome: A link from oxidative stress and inflammation to neurodegeneration. Synapse, 71, 21990. https://doi.org/10.1002/syn.21990
  • Rusek, M., Smith, J., El-Khatib, K., Aikins, K., Czuczwar, S. J., & Pluta, R. (2023). The role of the JAK/STAT signaling pathway in the pathogenesis of Alzheimer’s disease: New potential treatment target. International Journal of Molecular Sciences, 24, 864. https://doi.org/10.3390/ijms24010864
  • Sainsbury, F., Zeng, B., & Middelberg, A. P. J. (2014). Towards designer nanoemulsions for precision delivery of therapeutics. Current Opinion in Chemical Engineering, 4, 11–17. https://doi.org/10.1016/j.coche.2013.12.007
  • Schafer, D. P., Lehrman, E. K., & Stevens, B. (2013). The “quad-partite” synapse: Microglia–synapse interactions in the developing and mature CNS. Glia, 61, 24–36. https://doi.org/10.1002/glia.22389
  • Scheltens, P., Hallikainen, M., Grimmer, T., Duning, T., Gouw, C. E., Teunissen, A. M., Wink, P., Maruff, J., Harrison, C. M., Van Baal, S., Bruins, I., & Lues, N. D. (2018). Safety, tolerability and efficacy of the glutaminyl cyclase inhibitor PQ912 in Alzheimer’s disease: Results of a randomized, double-blind, placebo-controlled phase 2a study. Alzheimer’s Research & Therapy, 10, 107. https://doi.org/10.1186/s13195-018-0431-6
  • Schlepckow, K., Morenas-Rodríguez, E., Hong, S., & Haass, C. (2023). Stimulation of TREM2 with agonistic antibodies: An emerging therapeutic option for Alzheimer’s disease. The Lancet Neurology, 22, 1048–1060. https://doi.org/10.1016/S1474-4422(23)00247-8
  • Sharma, P., Kumari, P., Sharma, M., Sharma, R., Paliwal, A., & Srivastava, S. (2024). Therapeutic potential of Aloe vera-coated curcumin-encapsulated nanoparticles in an Alzheimer-induced mice model: Behavioural, biochemical and histopathological evidence. Journal of Microencapsulation, 41, 403–418. https://doi.org/10.1080/02652048.2024.2373715
  • Shorey, C. L., Mulla, R. T., & Mielke, J. G. (2023). The effects of synthetic glucocorticoid treatment for inflammatory disease on brain structure, function, and dementia outcomes: A systematic review. Brain Research, 1798, 148157. https://doi.org/10.1016/j.brainres.2022.148157
  • Si, Z.-Z., Zou, C.-J., Mei, X., Li, X.-F., Luo, H., & Shen, Y. (2023). Targeting neuroinflammation in Alzheimer’s disease: From mechanisms to clinical applications. Neural Regeneration Research, 18, 708. https://doi.org/10.4103/1673-5374.353484
  • Sidiropoulou, G. A., Metaxas, A., & Kourti, M. (2023). Natural antioxidants that act against Alzheimer’s disease through modulation of the NRF2 pathway: A focus on their molecular mechanisms of action. Frontiers in Endocrinology, 14. https://doi.org/10.3389/fendo.2023.1217730
  • Sierksma, A., Escott-Price, V., & De Strooper, B. (2020). Translating genetic risk of Alzheimer’s disease into mechanistic insight and drug targets. Science, 370, 61–66. https://doi.org/10.1126/science.abb8575
  • Stojiljkovic, M. R., Ain, Q., Bondeva, T., Heller, R., Schmeer, C., & Witte, O. W. (2019). Phenotypic and functional differences between senescent and aged murine microglia. Neurobiology of Aging, 74, 56–69. https://doi.org/10.1016/j.neurobiolaging.2018.10.007
  • Tan, Y., Zheng, Y., Xu, D., Sun, Z., Yang, H., & Yin, Q. (2021). Galectin-3: A key player in microglia-mediated neuroinflammation and Alzheimer’s disease. Cell & Bioscience, 11, 78. https://doi.org/10.1186/s13578-021-00592-7
  • Thakur, S., Dhapola, R., Sarma, P., Medhi, B., & Reddy, D. H. (2023). Neuroinflammation in Alzheimer’s disease: Current progress in molecular signaling and therapeutics. Inflammation, 46, 1–17. https://doi.org/10.1007/s10753-022-01721-1
  • Torres-Acosta, N., O’Keefe, J. H., O’Keefe, E. L., Isaacson, R., & Small, G. (2020). Therapeutic potential of TNF-α inhibition for Alzheimer’s disease prevention. Journal of Alzheimer’s Disease, 78, 619–626. https://doi.org/10.3233/JAD-200711
  • Vedagiri, A., & Thangarajan, S. (2016). Mitigating effect of chrysin-loaded solid lipid nanoparticles against amyloid β25–35-induced oxidative stress in rat hippocampal region: An efficient formulation approach for Alzheimer’s disease. Neuropeptides, 58, 111–125. https://doi.org/10.1016/j.npep.2016.03.002
  • Wang, M., Zhang, H., Liang, J., Huang, J., & Chen, N. (2023). Exercise suppresses neuroinflammation for alleviating Alzheimer’s disease. Journal of Neuroinflammation, 20, 76. https://doi.org/10.1186/s12974-023-02753-6
  • Wei, Y., Xia, X., Wang, X., Yang, W., He, S., & Wang, L. (2025). Enhanced BBB penetration and microglia-targeting nanomodulator for the two-pronged modulation of chronically activated microglia-mediated neuroinflammation in Alzheimer’s disease. Acta Pharmaceutica Sinica B, 15, 1098–1111. https://doi.org/10.1016/j.apsb.2025.01.015
  • Yao, L., Gu, X., Song, Q., Wang, X., Huang, M., & Hu, M. (2016). Nanoformulated alpha-mangostin ameliorates Alzheimer’s disease neuropathology by elevating LDLR expression and accelerating amyloid-beta clearance. Journal of Controlled Release, 226, 1–14. https://doi.org/10.1016/j.jconrel.2016.01.055
  • Yin, J., Zhao, F., Chojnacki, J. E., Fulp, J., Klein, W. L., & Zhang, S. (2018). NLRP3 inflammasome inhibitor ameliorates amyloid pathology in a mouse model of Alzheimer’s disease. Molecular Neurobiology, 55, 1977–1987. https://doi.org/10.1007/s12035-017-0467-9
  • Zhang, F., & Jiang, L. (2015). Neuroinflammation in Alzheimer disease. Neuropsychiatric Disease and Treatment, 243. https://doi.org/10.2147/NDT.S75546
  • Zhang, J., Zhang, Y., Wang, J., Xia, Y., Zhang, J., & Chen, L. (2024). Recent advances in Alzheimer’s disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduction and Targeted Therapy, 9, 211. https://doi.org/10.1038/s41392-024-01911-3
  • Zhang, R., Ding, N., Feng, X., & Liao, W. (2025). The gut microbiome, immune modulation, and cognitive decline: Insights on the gut–brain axis. Frontiers in Immunology, 16. https://doi.org/10.3389/fimmu.2025.1529958
  • Zhang, Y.-B., Xu, D., Bai, L., Zhou, Y.-M., Zhang, H., & Cui, Y.-L. (2022). A review of non-invasive drug delivery through respiratory routes. Pharmaceutics, 14, 1974. https://doi.org/10.3390/pharmaceutics14091974
  • Zhao, L. (2019). CD33 in Alzheimer’s disease biology, pathogenesis, and therapeutics: A mini-review. Gerontology, 65, 323–331. https://doi.org/10.1159/000492596
  • Zhao, R. (2024). Exercise mimetics: A novel strategy to combat neuroinflammation and Alzheimer’s disease. Journal of Neuroinflammation, 21, 40. https://doi.org/10.1186/s12974-024-03031-9
  • Zheng, D., Liwinski, T., & Elinav, E. (2020). Inflammasome activation and regulation: Toward a better understanding of complex mechanisms. Cell Discovery, 6, 36. https://doi.org/10.1038/s41421-020-0167-x

How to Cite

Kunal. Pharmacological Advances in Targeting Neuroinflammation for Alzheimer’s Disease. J. Pharm. Technol. Res. Manag.. 2025, 13, 134-149
Pharmacological Advances in Targeting Neuroinflammation for Alzheimer’s Disease

Current Issue

PeriodicityBiannually
Issue-1June
Issue-2December
ISSN Print2321-2217
ISSN Online2321-2225
RNI No.CHAENG/2013/50088

This work is licensed under a Creative Commons Attribution 4.0 International License.

Articles in Journal of Pharmaceutical Technology, Research and Management (J. Pharm. Tech. Res. Management) by Chitkara University Publications are Open Access articles that are published with licensed under a Creative Commons Attribution- CC-BY 4.0 International License. Based on a work at https://jptrm.chitkara.edu.in/. This license permits one to use, remix, tweak and reproduction in any medium, even commercially provided one give credit for the original creation.

View Legal Code of the above-mentioned license, https://creativecommons.org/licenses/by/4.0/legalcode

View Licence Deed here https://creativecommons.org/licenses/by/4.0/

Creative Commons License

Journal of Pharmaceutical Technology, Research and Management by Chitkara University Publications is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at https://jptrm.chitkara.edu.in//

Visibility, Memberships and Ethics