Lacidipine: Beyond Hypertension-Cardiovascular, Neuroprotective, and Renoprotective Effects

Published: January 29, 2026

Authors

Soumarshi Das, Prabir Maity, Anjali Sharma and Sarita Jangra

Keywords
Lacidipine, Calcium antagonist, Hypertension, Atherosclerosis, Neuroprotection, Cardiovascular disease

Abstract

Background: Hypertension remains a leading contributor to cardiovascular, cerebrovascular, and renal disease worldwide. While calcium channel blockers are well established for blood pressure management, growing attention is being given to agents that provide organ protection beyond hemodynamic control. Lacidipine, a highly lipophilic dihydropyridine calcium channel blocker, shows strong membrane affinity and antioxidant properties, suggesting potential benefits that extend beyond its antihypertensive role.

Purpose: This review critically examines lacidipine’s therapeutic profile by integrating evidence of its vascular, cardiovascular, neurovascular, and renal protective effects alongside its established clinical use.

Methods: A comprehensive analysis of preclinical studies, clinical trials, and mechanistic reports was conducted to examine lacidipine’s pharmacological properties, antioxidant activity, and vasoprotective roles beyond blood pressure control.

Results: Lacidipine exhibits pronounced vascular selectivity and sustained activity with good tolerability in clinical use. Experimental studies demonstrate antioxidant and anti-inflammatory effects that mitigate endothelial dysfunction, vascular remodeling, and oxidative injury. Clinical evidence supports its efficacy is comparable to other major antihypertensive classes. Emerging data further indicate neuroprotective effects in models of stroke and neurodegeneration, renoprotective actions through improved microvascular and glomerular function, and cardioprotective benefits including attenuation of left ventricular hypertrophy and atherosclerotic progression.

Conclusions: Beyond effective blood pressure management, lacidipine shows multi organ protective properties that may enhance long term outcomes in hypertension associated disorders. Further studies are warranted to validate these benefits in clinical settings and to explore repositioning strategies that leverage its pleiotropic therapeutic potential.

References

  • Abdel Ghany, A. F., Ashour, Y. M., Aly, N. B., Abdelzaher, L. A., & Mahmoud, A. S. (2020). Effect of Amlodipine and l-Carnitin Separately and Collectively on Certain Body Parameters that Are Related to Bone Metabolism in Ovariectomized Albino Rats. Minia Journal of Medical Research, 31(2), 228–240. https://doi.org/10.21608/mjmr.2022.221022
  • Ahmed, A., Bibi, A., Valoti, M., & Fusi, F. (2023). Perivascular Adipose Tissue and Vascular Smooth Muscle Tone: Friends or Foes? Cells, 12(8), 1196. https://doi.org/10.3390/CELLS12081196
  • Al-Naimi, M., Rasheed, H., Hussien, N., Al-Kuraishy, H., & Al-Gareeb, A. (2019). Nephrotoxicity: Role and significance of renal biomarkers in the early detection of acute renal injury. Journal of Advanced Pharmaceutical Technology and Research, 10(3), 95–99. https://doi.org/10.4103/japtr.JAPTR_336_18
  • Aremu, B. A., Isiorho, O. A., Sulaiman, Z., Ozhe, I. I., Galadima, I. H., Abubakar, D., & Isaac, J. A. (2025). In vitro-in vivo correlation as a tool for predicting bioavailability of aspirin liquisolid tablets. The Nigerian Journal of Pharmacy, 59(1), 176–185. https://doi.org/10.51412/psnnjp.2025.17
  • Ashok, A., Andrabi, S. S., Mansoor, S., Kuang, Y., Kwon, B. K., & Labhasetwar, V. (2022). Antioxidant Therapy in Oxidative Stress-Induced Neurodegenerative Diseases: Role of Nanoparticle-Based Drug Delivery Systems in Clinical Translation. Antioxidants, 11(2), 408. https://doi.org/10.3390/ANTIOX11020408
  • Baid, H., Kaeley, N., Singh, S., Mahala, P., Chawang, H., Datta, S. S., Manchanda, H., & Shankar, T. (2023). Treatment Modalities in Calcium Channel Blocker Overdose: A Systematic Review. Cureus, 15(8), e42854. https://doi.org/10.7759/CUREUS.42854
  • Błaszczyk, R., Petniak, A., Bogucki, J., Kocki, J., Wysokiński, A., & Głowniak, A. (2024). Association between Resistant Arterial Hypertension, Type 2 Diabetes, and Selected microRNAs. Journal of Clinical Medicine, 13(2). https://doi.org/10.3390/jcm13020542
  • Boese, A. C., Lee, J. P., & Hamblin, M. H. (2020). Neurovascular protection by peroxisome proliferator-activated receptor α in ischemic stroke. Experimental Neurology, 331. Academic Press Inc. https://doi.org/10.1016/j.expneurol.2020.113323
  • Bravo-Sagua, R., Parra, V., Muñoz-Cordova, F., Sanchez-Aguilera, P., Garrido, V., Contreras-Ferrat, A., Chiong, M., & Lavandero, S. (2020). Sarcoplasmic reticulum and calcium signaling in muscle cells: Homeostasis and disease. International Review of Cell and Molecular Biology, 350, 197–264. https://doi.org/10.1016/BS.IRCMB.2019.12.007
  • Cardoso, C. R. L., & Salles, G. F. (2021). Associations of the nocturnal blood pressure fall and morning surge with cardiovascular events and mortality in individuals with resistant hypertension. Journal of Hypertension, 39(6), 1177–1187. https://doi.org/10.1097/HJH.0000000000002775
  • Chaudhari, N. C., Bhangale, A. A., & Bachewar, P. (2024). Comparative Analysis of Blood Pressure Control Using Beta Blockers vs. Calcium Channel Blockers in Hypertensive Patients. European Journal of Cardiovascular Medicine, 14, 799–803. https://doi.org/10.5083/EJCM/24-06
  • Chen, Z. R., Huang, J. B., Yang, S. L., & Hong, F. F. (2022). Role of Cholinergic Signaling in Alzheimer’s Disease. Molecules, 27(6), 1816. https://doi.org/10.3390/MOLECULES27061816
  • Collier, D. J., Taylor, M., Godec, T., Shiel, J., James, R., Chowdury, Y., Ebano, P., Monk, V., Patel, M., Pheby, J., Pheby, R., Foubister, A., David, C., Saxena, M., Richardson, L., Siddle, J., Timlin, G., Goldsmith, P., Deeming, N., … Caulfield, M. J. (2024). Personalized Antihypertensive Treatment Optimization With Smartphone-Enabled Remote Precision Dosing of Amlodipine During the COVID-19 Pandemic (PERSONAL-CovidBP Trial). Journal of the American Heart Association, 13(4), 30749. https://doi.org/10.1161/JAHA.123.030749
  • Ezike, T. C., Okpala, U. S., Onoja, U. L., Nwike, C. P., Ezeako, E. C., Okpara, O. J., Okoroafor, C. C., Eze, S. C., Kalu, O. L., Odoh, E. C., Nwadike, U. G., Ogbodo, J. O., Umeh, B. U., Ossai, E. C., & Nwanguma, B. C. (2023). Advances in drug delivery systems, challenges and future directions. Heliyon, 9(6), e17488. https://doi.org/10.1016/J.HELIYON.2023.E17488
  • Felkle, D., Jarczyński, M., Kaleta, K., Zięba, K., & Nazimek, K. (2022). The immunomodulatory effects of antihypertensive therapy: A review. Biomedicine & Pharmacotherapy, 153, 113287. https://doi.org/10.1016/J.BIOPHA.2022.113287
  • Findeisen, H. M., Weckbach, S., Stark, R. G., Reiser, M. F., Schoenberg, S. O., & Parhofer, K. G. (2010). Metabolic syndrome predicts vascular changes in whole body magnetic resonance imaging in patients with long standing diabetes mellitus. Cardiovascular Diabetology, 9(1), 1–7. https://doi.org/10.1186/1475-2840-9-44/TABLES/4
  • Finlay, D. B., Nguyen, T., Gamage, T. F., Chen, S., Barrus, D. G., Patel, P. R., Thomas, B. F., Wiley, J. L., Zhang, Y., & Glass, M. (2022). Exploring determinants of agonist efficacy at the CB1 cannabinoid receptor: Analogues of the synthetic cannabinoid receptor agonist EG-018. Pharmacology Research & Perspectives, 10(1), e00901. https://doi.org/10.1002/PRP2.901
  • Fogari, R., Mugellini, A., Zoppi, A., Corradi, L., Rinaldi, A., Derosa, G., & Preti, P. (2003). Differential effects of lercanidipine and nifedipine GITS on plasma norepinephrine in chronic treatment of hypertension. American Journal of Hypertension, 16(7), 596–599. https://doi.org/10.1016/S0895-7061(03)00901-4
  • Gaydarski, L., Petrova, K., Stanchev, S., Pelinkov, D., Iliev, A., Dimitrova, I. N., Kirkov, V., Landzhov, B., & Stamenov, N. (2025). Morphometric and Molecular Interplay in Hypertension-Induced Cardiac Remodeling with an Emphasis on the Potential Therapeutic Implications. International Journal of Molecular Sciences, 26(9), 4022. https://doi.org/10.3390/IJMS26094022
  • Godfraind, T. (2017). Discovery and development of calcium channel blockers. Frontiers in Pharmacology, 8(May), 259145. https://doi.org/10.3389/FPHAR.2017.00286/XML
  • Grewal, S., Singh, S., Sharma, N., Behl, T., Grewal, I. K., & Gupta, S. (2023). Insights into the Pivotal Role of Calcium Channel Blockers and Its Nanoformulations in the Management of Hypertension. BioNanoScience, 13(4), 1437–1462. https://doi.org/10.1007/S12668-023-01215-W
  • Hajdys, J., Fularski, P., Leszto, K., Majchrowicz, G., Stabrawa, M., Młynarska, E., Rysz, J., & Franczyk, B. (2023). New Insights into the Nephroprotective Potential of Lercanidipine. International Journal of Molecular Sciences, 24(18). https://doi.org/10.3390/ijms241814048
  • Hatamian, S., Abdi, A., Asl, F. S. S., Tafazolimoghadam, A., Tavasol, A., Nejad, S. A. M., Madadi, R., Tajabadi, Z., Dehghani, M., Ahmadpoor, N., Fathi, M., Hajiesmaeili, M., & Nooraei, N. (2025). Examining the therapeutic potential and side effects of calcium channel blockers in mortality and morbidity of patients with stroke: A systematic review of pre-clinical and clinical studies. IBRO Neuroscience Reports, 18, 222–243. https://doi.org/10.1016/J.IBNEUR.2025.01.002
  • Isbister, G. K., Jenkins, S., Harris, K., Downes, M. A., & Isoardi, K. Z. (2025). Calcium channel blocker overdose: Not all the same toxicity. British Journal of Clinical Pharmacology, 91(3), 740–747. https://doi.org/10.1111/BCP.16258
  • Jones, K. E., Hayden, S. L., Meyer, H. R., Sandoz, J. L., Arata, W. H., Dufrene, K., Ballaera, C., Lopez Torres, Y., Griffin, P., Kaye, A. M., Shekoohi, S., & Kaye, A. D. (2024). The Evolving Role of Calcium Channel Blockers in Hypertension Management: Pharmacological and Clinical Considerations. Current Issues in Molecular Biology, 46(7), 6315–6327. https://doi.org/10.3390/cimb46070377
  • Joo, S. J. (2023). Beta-blocker therapy in patients with acute myocardial infarction: Not all patients need it. Acute and Critical Care, 38(3), 251. https://doi.org/10.4266/ACC.2023.00955
  • Khurana, K., Kumar, M., & Bansal, N. (2021). Lacidipine Prevents Scopolamine-Induced Memory Impairment by Reducing Brain Oxido-nitrosative Stress in Mice. Neurotoxicity Research, 39(4), 1087–1102. https://doi.org/10.1007/S12640-021-00346-W
  • Kim, H. M., Hwang, I. C., Choi, H. M., Yoon, Y. E., & Cho, G. Y. (2022). Prognostic implication of left ventricular hypertrophy regression after antihypertensive therapy in patients with hypertension. Frontiers in Cardiovascular Medicine, 9, 1082008. https://doi.org/10.3389/FCVM.2022.1082008/BIBTEX
  • Kim, K. Y., Suh, Y. H., & Chang, K. A. (2020). Therapeutic effects of human amniotic epithelial stem cells in a transgenic mouse model of Alzheimer’s disease. International Journal of Molecular Sciences, 21(7). https://doi.org/10.3390/IJMS21072658
  • Kotruchin, P., Imoun, S., Mitsungnern, T., Aountrai, P., Domthaisong, M., & Kario, K. (2021). The effects of foot reflexology on blood pressure and heart rate: A randomized clinical trial in stage-2 hypertensive patients. The Journal of Clinical Hypertension, 23(3), 680–686. https://doi.org/10.1111/JCH.14103
  • Kumar, G., Dey, S. K., & Kundu, S. (2020). Functional implications of vascular endothelium in regulation of endothelial nitric oxide synthesis to control blood pressure and cardiac functions. Life Sciences, 259, 118377. https://doi.org/10.1016/J.LFS.2020.118377
  • Lee, E. M. (2023). Calcium channel blockers for hypertension: Old, but still useful. Cardiovascular Prevention and Pharmacotherapy, 5(4), 113–125. https://doi.org/10.36011/cpp.2023.5.e16
  • Lee, R. M. K. W. (2024). Structural and Functional Consequence of Antihypertensive Treatments on Blood Vessels. Blood Vessel Changes in Hypertension Structure and Function: Volume I, 163–190. https://doi.org/10.1201/9781003574354
  • Leyane, T. S., Jere, S. W., & Houreld, N. N. (2022). Oxidative Stress in Ageing and Chronic Degenerative Pathologies: Molecular Mechanisms Involved in Counteracting Oxidative Stress and Chronic Inflammation. International Journal of Molecular Sciences, 23(13). https://doi.org/10.3390/IJMS23137273
  • Li, H., Förstermann, U., Xia, N., Kuntic, M., Münzel, T., & Daiber, A. (2025). Pharmacological targeting of endothelial nitric oxide synthase dysfunction and nitric oxide replacement therapy. Free Radical Biology and Medicine, 237, 455–472. https://doi.org/10.1016/J.FREERADBIOMED.2025.06.009
  • Liang, L., Kung, J. Y., Mitchelmore, B., Cave, A., & Banh, H. L. (2022). Comparative peripheral edema for dihydropyridines calcium channel blockers treatment: A systematic review and network meta‐analysis. The Journal of Clinical Hypertension, 24(5), 536–554.
  • Lin, S. Y., Lin, C. L., Lin, C. C., Hsu, W. H., Hsu, C. Y., & Kao, C. H. (2022). Chronic Kidney Disease Progression Risk in Patients with Diabetes Mellitus Using Dihydropyridine Calcium Channel Blockers: A Nationwide, Population-Based, Propensity Score Matching Cohort Study. Frontiers in Pharmacology, 13, 786203. https://doi.org/10.3389/FPHAR.2022.786203/BIBTEX
  • Liu, X., Huang, Z., Zhang, Y., Shui, X., Liu, F., Wu, Z., & Xu, S. (2021). Lacidipine Ameliorates the Endothelial Senescence and Inflammatory Injury Through CXCR7/P38/C/EBP-β Signaling Pathway. Frontiers in Cardiovascular Medicine, 8. https://doi.org/10.3389/fcvm.2021.692540
  • McCarty, M. F., Dinicolantonio, J. J., & Lerner, A. (2021). A fundamental role for oxidants and intracellular calcium signals in Alzheimer’s pathogenesis—and how a comprehensive antioxidant strategy may aid prevention of this disorder. International Journal of Molecular Sciences, 22(4), 1–27. https://doi.org/10.3390/IJMS22042140
  • Minh, H. Van, Tien, H. A., Sinh, C. T., Thang, D. C., Chen, C. H., Tay, J. C., Siddique, S., Wang, T. D., Sogunuru, G. P., Chia, Y. C., & Kario, K. (2021). Assessment of preferred methods to measure insulin resistance in Asian patients with hypertension. Journal of Clinical Hypertension, 23(3), 529–537. https://doi.org/10.1111/jch.14155
  • Mustapha, M., Nassir, C. M. N. C. M., Aminuddin, N., Safri, A. A., & Ghazali, M. M. (2019). Cerebral Small Vessel Disease (CSVD) – Lessons From the Animal Models. Frontiers in Physiology, 10, 1317. https://doi.org/10.3389/FPHYS.2019.01317
  • Nair, T., Kumar, A. S., Unni, T. G., Tiwaskar, M. H., Sharma, S., Gaurav, K., Nair, T., Kumar, A. S., Unni, T. G., Tiwaskar, M. H., Sharma, S., & Gaurav, K. (2022). 24-Hour Blood Pressure Control with Amlodipine: A Review of the Current Scenario. Journal of Cardiac Critical Care TSS, 6(1), 59–68. https://doi.org/10.1055/S-0042-1750195
  • Nawrot, D. A., Ozer, L. Y., & Zen, A. A. H. (2022). A Novel High Content Angiogenesis Assay Reveals That Lacidipine, L-Type Calcium Channel Blocker, Induces In Vitro Vascular Lumen Expansion. International Journal of Molecular Sciences, 23(9). https://doi.org/10.3390/ijms23094891
  • Oh, G. C., & Cho, H. J. (2020). Blood pressure and heart failure. Clinical Hypertension, 26(1), 1–8. https://doi.org/10.1186/S40885-019-0132-X/FIGURES/1
  • Park, B., Bakbak, E., Teoh, H., Krishnaraj, A., Dennis, F., Quan, A., Rotstein, O. D., Butler, J., Hess, D. A., & Verma, S. (2024). GLP-1 receptor agonists and atherosclerosis protection: the vascular endothelium takes center stage. American Journal of Physiology – Heart and Circulatory Physiology, 326(5), H1159–H1176. https://doi.org/10.1152/AJPHEART.00574.2023
  • Patial, S., Sharma, A., Raj, K., & Shukla, G. (2024). Atherosclerosis: Progression, risk factors, diagnosis, treatment, probiotics and synbiotics as a new prophylactic hope. The Microbe, 5, 100212. https://doi.org/10.1016/J.MICROB.2024.100212
  • Pugh, D., Gallacher, P. J., & Dhaun, N. (2019). Management of Hypertension in Chronic Kidney Disease. Drugs, 79(4), 365–379. https://doi.org/10.1007/S40265-019-1064-1/FIGURES/3
  • Ramachandra, C. J. A., Cong, S., Chan, X., Yap, E. P., Yu, F., & Hausenloy, D. J. (2021). Oxidative stress in cardiac hypertrophy: From molecular mechanisms to novel therapeutic targets. Free Radical Biology and Medicine, 166, 297–312. https://doi.org/10.1016/j.freeradbiomed.2021.02.040
  • Rossi, L., Costa, B., Tomei, R., Franceschini, L., Castello, C., Carbonieri, E., & Zardini, P. (2002). Antihypertensive effects of lacidipine during effort in mild to moderate hypertension. Journal of Cardiovascular Pharmacology, 40(2), 315–321. https://doi.org/10.1097/00005344-200208000-00017
  • Rudic, B., Tülümen, E., & Borggrefe, M. (2024). Modulation of calcium handling—Calcium-channel modulators. In Antiarrhythmic Drugs (pp. 173–195). https://doi.org/10.1007/978-3-031-74046-6_6
  • Sai Chebrolu, T., Kumar, L., & Verma, R. (2021). Lacidipine: Review of analytical methods developed for pharmaceutical dosage forms and biological fluids. Bioanalysis, 13(12), 1011–1024. https://doi.org/10.4155/bio-2021-0024
  • Scholtes, R. A., van Baar, M. J. B., Kok, M. D., Bjornstad, P., Cherney, D. Z. I., Joles, J. A., & van Raalte, D. H. (2021). Renal haemodynamic and protective effects of renoactive drugs in type 2 diabetes: Interaction with SGLT2 inhibitors. Nephrology (Carlton, Vic.), 26(5), 377. https://doi.org/10.1111/NEP.13839
  • Sheng, Y., Qiao, C., Zhang, Z., Shi, X., Yang, L., Xi, R., Yu, J., Liu, W., Zhang, G., & Wang, F. (2025). Calcium channel blocker lacidipine promotes antitumor immunity by reprogramming tryptophan metabolism. Advanced Science, 12(3), 2409310. https://doi.org/10.1002/ADVS.202409310
  • Shriya, V. A., Nayak, U. Y., Sathyanarayana, M. B., Chaudhari, B. B., & Bhat, K. (2025). Formulation strategy of BCS-II drugs by coupling mechanistic in-vitro and nonclinical in-vivo data with PBPK: Fundamentals of absorption-dissolution to parameterization of modelling and simulation. In AAPS PharmSciTech, 26(5). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1208/s12249-025-03093-9
  • Story, D., Aminoroaya, A., Skelton, Z., Kumari, M., Zhang, Y., & Smith, B. R. (2023). Nanoparticle-based therapies in hypertension. Hypertension, 80(12), 2506–2514. https://doi.org/10.1161/HYPERTENSIONAHA.123.19523
  • Torres-Rico, M., García-Calvo, V., Gironda-Martínez, A., Pascual-Guerra, J., García, A. G., & Maneu, V. (2024). Targeting calciumopathy for neuroprotection: Focus on calcium channels Cav1, Orai1 and P2X7. Cell Calcium, 123, 102928. https://doi.org/10.1016/J.CECA.2024.102928
  • Tsinari, A., Roumeliotis, S., Neofytou, I. E., Varouktsi, G., Veljkovic, A., Stamou, A., Leivaditis, K., & Liakopoulos, V. (2025). The clinical utility and plausibility of oxidative and antioxidant variables in chronic and end-stage kidney disease: A review of the literature. International Journal of Molecular Sciences, 26(7). https://doi.org/10.3390/ijms26073376
  • Vergès, B., Aboyans, V., Angoulvant, D., Boutouyrie, P., Cariou, B., Hyafil, F., Mohammedi, K., & Amarenco, P. (2022). Protection against stroke with glucagon-like peptide-1 receptor agonists: A comprehensive review of potential mechanisms. Cardiovascular Diabetology, 21(1). https://doi.org/10.1186/s12933-022-01686-3
  • Wang, L., & Tang, C. (2020a). Targeting platelet in atherosclerosis plaque formation: Current knowledge and future perspectives. International Journal of Molecular Sciences, 21(24), 1–23. https://doi.org/10.3390/ijms21249760
  • Wang, L., & Tang, C. (2020b). Targeting platelet in atherosclerosis plaque formation: Current knowledge and future perspectives. International Journal of Molecular Sciences, 21(24), 9760. https://doi.org/10.3390/IJMS21249760
  • Wang, Y., Li, Y., Huo, Y., & Wang, J. G. (2021a). Treatment effect of lacidipine and amlodipine on clinic and ambulatory blood pressure and arteria stiffness in a randomised double-blind trial. Blood Pressure, 30(2), 108–117. https://doi.org/10.1080/08037051.2020.1840915
  • Wang, Y., Li, Y., Huo, Y., & Wang, J. G. (2021b). Treatment effect of lacidipine and amlodipine on clinic and ambulatory blood pressure and arteria stiffness in a randomised double-blind trial. Blood Pressure, 30(2), 108–117. https://doi.org/10.1080/08037051.2020.1840915
  • Wu, D., Dong, D., Bi, X., Liu, Y., & Ma, Y. (2021). Cucurbitacin IIb improved active chromatin-induced systemic lupus erythematosus via balancing the percentage of Th17 and Treg cells. Clinical and Experimental Pharmacology and Physiology, 48(3), 329–336. https://doi.org/10.1111/1440-1681.13434
  • Yang, J., Shao, L., Cimini, M., Wu, Z., Xu, S., Liu, X., Huang, Z., Zhang, Y., Shui, X., & Liu, F. (2021). Lacidipine ameliorates the endothelial senescence and inflammatory injury through CXCR7/P38/C/EBP-β signaling pathway. Frontiers in Cardiovascular Medicine, 8, 692540. https://doi.org/10.3389/FCVM.2021.692540
  • Yang, L., Li, X., Ni, L., & Lin, Y. (2025). Treatment of endothelial cell dysfunction in atherosclerosis: A new perspective integrating traditional and modern approaches. Frontiers in Physiology, 16, 1555118. https://doi.org/10.3389/FPHYS.2025.1555118
  • Zakaraya, Z., Abu Assab, M., Tamimi, L. N., Karameh, N., Hailat, M., Al-Omari, L., Abu Dayyih, W., Alasasfeh, O., Awad, M., & Awad, R. (2024). Pharmacokinetics and pharmacodynamics: A comprehensive analysis of the absorption, distribution, metabolism, and excretion of psychiatric drugs. Pharmaceuticals, 17(3). https://doi.org/10.3390/ph17030280
  • Zanchetti, A., Bond, M. G., Hennig, M., Neiss, A., Mancia, G., Dal Palù, C., Hansson, L., Magnani, B., Rahn, K. H., Reid, J. L., Rodicio, J., Safar, M., Eckes, L., & Rizzini, P. (2002). Calcium antagonist lacidipine slows down progression of asymptomatic carotid atherosclerosis: Principal results of the European Lacidipine Study on Atherosclerosis (ELSA), a randomized, double-blind, long-term trial. Circulation, 106(19), 2422–2427. https://doi.org/10.1161/01.CIR.0000039288.86470.DD
  • Zanchetti, A., Bond, M. G., Hennig, M., Neiss, A., Mancia, G., Dal Palù, C., Hansson, L., Magnani, B., Rahn, K.-H., & Reid, J. L. (2002). Calcium antagonist lacidipine slows down progression of asymptomatic carotid atherosclerosis: Principal results of the European Lacidipine Study on Atherosclerosis (ELSA), a randomized, double-blind, long-term trial. Circulation, 106(19), 2422–2427.
  • Zhang, S., Han, Y., & Xu, D. (2025). Chinese guidelines for the diagnosis and treatment of heart failure 2024. Cardiology Discovery, 5(1), 1–38. https://doi.org/10.1097/CD9.0000000000000146
  • Zhang, Y., Wang, Z., Wang, Y., Jin, W., Zhang, Z., Jin, L., Qian, J., & Zheng, L. (2024). CYP3A4 and CYP3A5: The crucial roles in clinical drug metabolism and the significant implications of genetic polymorphisms. PeerJ, 12(12), e18636. https://doi.org/10.7717/PEERJ.18636
  • Zhang, Z., Dalan, R., Hu, Z., Wang, J. W., Chew, N. W. S., Poh, K. K., Tan, R. S., Soong, T. W., Dai, Y., Ye, L., & Chen, X. (2022). Reactive oxygen species scavenging nanomedicine for the treatment of ischemic heart disease. Advanced Materials, 34(35). https://doi.org/10.1002/adma.202202169
  • Zhao, L., Zhao, L., Liu, D., Huang, F., Peng, Q., Lu, J., Zhou, J., Zheng, S., & Liu, X. (2025). Vascular smooth muscle cells: A therapeutic target in atherosclerosis. Reviews in Cardiovascular Medicine, 26(6). https://doi.org/10.31083/RCM28240
  • Zhao, M., Ma, J., Li, M., Zhang, Y., Jiang, B., Zhao, X., Huai, C., Shen, L., Zhang, N., He, L., & Qin, S. (2021). Cytochrome p450 enzymes and drug metabolism in humans. International Journal of Molecular Sciences, 22(23), 12808. https://doi.org/10.3390/IJMS222312808/S1
  • Zhao, Y., Sun, Z., Li, L., Yuan, W., & Wang, Z. (2022). Role of collagen in vascular calcification. Journal of Cardiovascular Pharmacology, 80(6), 769–778. https://doi.org/10.1097/FJC.0000000000001359

How to Cite

Soumarshi Das, Prabir Maity, Anjali Sharma and Sarita Jangra. Lacidipine: Beyond Hypertension-Cardiovascular, Neuroprotective, and Renoprotective Effects. J. Pharm. Technol. Res. Manag.. 2025, 13, 1-21
Lacidipine: Beyond Hypertension-Cardiovascular, Neuroprotective, and Renoprotective Effects

Current Issue

PeriodicityBiannually
Issue-1June
Issue-2December
ISSN Print2321-2217
ISSN Online2321-2225
RNI No.CHAENG/2013/50088

This work is licensed under a Creative Commons Attribution 4.0 International License.

Articles in Journal of Pharmaceutical Technology, Research and Management (J. Pharm. Tech. Res. Management) by Chitkara University Publications are Open Access articles that are published with licensed under a Creative Commons Attribution- CC-BY 4.0 International License. Based on a work at https://jptrm.chitkara.edu.in/. This license permits one to use, remix, tweak and reproduction in any medium, even commercially provided one give credit for the original creation.

View Legal Code of the above-mentioned license, https://creativecommons.org/licenses/by/4.0/legalcode

View Licence Deed here https://creativecommons.org/licenses/by/4.0/

Creative Commons License

Journal of Pharmaceutical Technology, Research and Management by Chitkara University Publications is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at https://jptrm.chitkara.edu.in//

Visibility, Memberships and Ethics