Formulation Strategies for Nose-to-Brain Drug Delivery

Published: May 7, 2022

Authors

  • Manisha Vohra
  • Mohammad Amir
  • Amit Sharma
  • Sheetu Wadhwa
Keywords
Nose-to-brain delivery, Novel drug delivery, Formulation strategies, Neurological disorders

Abstract

Background: Neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, Multiple Sclerosis, Dementia, and others are becoming more common globally due to people’s changing lifestyles. Furthermore, the presence of the Blood-Brain barrier and other limitations of oral and other routes of administration makes drug delivery to the brain somewhat tricky.As a result, numerous novel drug delivery systems are being developed for drug administration to the brain. However, nose-to-brain administration is one of the most effective, safe, and non-invasive methods.

Purpose: To discuss nose-to-brain deliveryas a novel drug delivery system in the treatment of various brain disorders and to provide information about various formulation strategies designed to deliver the drug to the brain effectively.

Methods: A preliminary search was conducted in the PubMed, OVID Medline, Embase, ScienceDirect, Web of Science, and Google Scholar databases using keywords such as “Intranasal delivery, nose-to-brain drug transport, formulations for intranasal delivery.”

Results: Various marketed formulations for nose-to-brain drug delivery are listed in this review, like naringenin, donepezil, pentamidine, rivastigmine,efavirenz, desvenlafaxine,lamotrigine, haloperidol,nimodipine, olanzapine, valproic acid, ovalbumin,clonazepam,fentanyl citrate, nifedipine in the form of poloxamer chitosan-based nano-formulation, nano-emulsion, chitosan niosomes, chitosan containing emulsion, solid-lipid nanoparticles,PLGA-chitosan nanoparticles, solution, mucoadhesive microemulsion,nanostructured lipid carriers, cationic liposomes,peptide-attached liposomes, multimellar liposomes with their research findings in treating various brain disorders.

Conclusion: This review discusses nose-to-brain drug delivery processes, the pathway for its action, advantages over other delivery routes, barriers to this system, and current formulation strategies for nose-to-brain transport.

References

  • Abbott, N. J., Patabendige, A. A., Dolman, D. E., Yusof, S. R., & Begley, D. J. (2010). Structure and function of the blood–brain barrier. Neurobiology of disease37(1), 13-25. https://doi.org/10.1016/j.nbd.2009.07.030
  • Aderibigbe B. A. (2018). In Situ-Based Gels for Nose to Brain Delivery for the Treatment of Neurological Diseases. Pharmaceutics10(2), 40. https://doi.org/10.3390/pharmaceutics10020040
  • Agu, R. U. (2016). Challenges in nasal drug absorption: how far have we come?. Therapeutic delivery7(7), 495-510. https://doi.org/10.4155/tde-2016-0022
  • Ahmad, N., Ahmad, R., Ahmad, F. J., Ahmad, W., Alam, M. A., Amir, M., & Ali, A. (2020). Poloxamer-chitosan-based Naringenin nano-formulation used in brain targeting for the treatment of cerebral ischemia. Saudi Journal of Biological Sciences27(1), 500-517. https://doi.org/10.1016/j.sjbs.2019.11.008
  • Alsarra, I. A., Hamed, A. Y., &Alanazi, F. K. (2008). Acyclovir liposomes for intranasal systemic delivery: development and pharmacokinetics evaluation. Drug delivery15(5), 313-321. https://doi.org/10.1080/10717540802035251
  • Amidi, M., Mastrobattista, E., Jiskoot, W., & Hennink, W. E. (2010). Chitosan-based delivery systems for protein therapeutics and antigens. Advanced drug delivery reviews62(1), 59-82. https://doi.org/10.1016/j.addr.2009.11.009
  • Bansal, D., Yadav, K., Pandey, V., Ganeshpurkar, A., Agnihotri, A., & Dubey, N. (2016). Lactobionic acid coupled liposomes: an innovative strategy for targeting hepatocellular carcinoma. Drug delivery23(1), 140-146. https://doi.org/10.3109/10717544.2014.907373
  • Benedict, C., Frey II, W. H., Schiöth, H. B., Schultes, B., Born, J., &Hallschmid, M. (2011). Intranasal insulin as a therapeutic option in the treatment of cognitive impairments. Experimental gerontology46(2-3), 112-115. https://doi.org/10.1016/j.exger.2010.08.026
  • Berardelli, A., Rothwell, J. C., Thompson, P. D., & Hallett, M. (2001). Pathophysiology of bradykinesia in Parkinson’s disease. Brain124(11), 2131-2146. https://doi.org/10.1093/brain/124.11.2131
  • Bhise, S. B., Yadav, A. V., Avachat, A. M., &Malayandi, R. (2008). Bioavailability of intranasal drug delivery system. Asian Journal of Pharmaceutics (AJP)2(4). https://doi.org/10.22377/ajp.v2i4.203
  • Borlongan, C. V., &Emerich, D. F. (2003). Facilitation of drug entry into the CNS via transient permeation of blood brain barrier: laboratory and preliminary clinical evidence from bradykinin receptor agonist, Cereport. Brain research bulletin60(3), 297-306. https://doi.org/10.1016/S0361-9230(03)00043-1
  • Bors, L. A., &Erdő, F. (2019). Overcoming the blood–brain barrier. challenges and tricks for CNS drug delivery. Scientia Pharmaceutica87(1), 6. https://doi.org/10.3390/scipharm87010006
  • Chaturvedi, M., Kumar, M., & Pathak, K. (2011). A review on mucoadhesive polymer used in nasal drug delivery system. Journal of advanced pharmaceutical technology & research2(4), 215. http://doi.org/10.4103/2231-4040.90876
  • Clementino, A., Batger, M., Garrastazu, G., Pozzoli, M., Del Favero, E., Rondelli, V., … &Sonvico, F. (2016). The nasal delivery of nanoencapsulated statins–an approach for brain delivery. International journal of nanomedicine11, 6575. http://doi.org/10.2147/IJN.S119033
  • Clerico, D. M., To, W. C., & Lanza, D. C. (2003). Anatomy of the human nasal passages. Neurological Disease and Therapy57, 1-16.
  • Corbo, D. C., Liu, J. C., & Chien, Y. W. (1990). Characterization of the barrier properties of mucosal membranes. Journal of pharmaceutical sciences79(3), 202-206. https://doi.org/10.1002/jps.2600790304
  • Costantino, H. R., Illum, L., Brandt, G., Johnson, P. H., & Quay, S. C. (2007). Intranasal delivery: physicochemical and therapeutic aspects. International journal of pharmaceutics337(1-2), 1-24. https://doi.org/10.1016/j.ijpharm.2007.03.025
  • Crowe, T. P., Greenlee, M. H. W., Kanthasamy, A. G., & Hsu, W. H. (2018). Mechanism of intranasal drug delivery directly to the brain. Life sciences195, 44-52. https://doi.org/10.1016/j.lfs.2017.12.025
  • Dalpiaz, A., Gavini, E., Colombo, G., Russo, P., Bortolotti, F., Ferraro, L., … &Giunchedi, P. (2008). Brain uptake of an anti-ischemic agent by nasal administration of microparticles. Journal of pharmaceutical sciences97(11), 4889-4903. https://doi.org/10.1002/jps.21335
  • Danielyan, L., Schäfer, R., von Ameln-Mayerhofer, A., Bernhard, F., Verleysdonk, S., Buadze, M., … & Frey, W. H. (2011). Therapeutic efficacy of intranasally delivered mesenchymal stem cells in a rat model of Parkinson disease. Rejuvenation research14(1), 3-16. https://doi.org/10.1089/rej.2010.1130
  • Dhakar, R. C. (2011). Nasal drug delivery: success through integrated device development. Journal of Drug Delivery and Therapeutics1(1).https://doi.org/10.22270/jddt.v1i1.3
  • Dhuria, S. V., Hanson, L. R., & Frey, W. H. (2009). Novel vasoconstrictor formulation to enhance intranasal targeting of neuropeptide therapeutics to the central nervous system. Journal of Pharmacology and Experimental Therapeutics328(1), 312-320. https://doi.org/10.1124/jpet.108.145565
  • Dimiou, S., Lopes, R. M., Kubajewska, I., Mellor, R. D., Schlosser, C. S., Shet, M. S., Huang, H., Akcan, O., Whiteside, G. T., Schätzlein, A. G., &Uchegbu, I. F. (2022). Particulate levodopa nose-to-brain delivery targets dopamine to the brain with no plasma exposure. International journal of pharmaceutics618, 121658. https://doi.org/10.1016/j.ijpharm.2022.121658
  • Dimova, S., Brewster, M. E., Noppe, M., Jorissen, M., &Augustijns, P. (2005). The use of human nasal in vitro cell systems during drug discovery and development. Toxicology in vitro19(1), 107-122. https://doi.org/10.1016/j.tiv.2004.07.003
  • Djupesland, P. G., Chatkin, J. M., Qian, W., & Haight, J. S. (2001). Nitric oxide in the nasal airway: a new dimension in otorhinolaryngology. American journal of otolaryngology22(1), 19-32. https://doi.org/10.1053/ajot.2001.20700
  • Dong, X. (2018). Current strategies for brain drug delivery. Theranostics8(6), 1481. http://doi.org/10.7150/thno.21254
  • Einer-Jensen, N., & Hunter, R. H. F. (2005). Counter-current transfer in reproductive biology. Reproduction129(1), 9-18. https://doi.org/10.1530/rep.1.00278
  • Erdő, F., Bors, L. A., Farkas, D., Bajza, Á., &Gizurarson, S. (2018). Evaluation of intranasal delivery route of drug administration for brain targeting. Brain research bulletin143, 155-170. https://doi.org/10.1016/j.brainresbull.2018.10.009
  • Eskandari, S., Varshosaz, J., Minaiyan, M., & Tabbakhian, M. (2011). Brain delivery of valproic acid via intranasal administration of nanostructured lipid carriers: in vivo pharmacodynamic studies using rat electroshock model. International journal of nanomedicine6, 363. http://doi.org/10.2147/IJN.S15881
  • Espinoza, L. C., Silva-Abreu, M., Clares, B., Rodríguez-Lagunas, M. J., Halbaut, L., Cañas, M. A., &Calpena, A. C. (2019). Formulation strategies to improve nose-to-brain delivery of donepezil. Pharmaceutics11(2), 64. https://doi.org/10.3390/pharmaceutics11020064
  • Fazil, M., Md, S., Haque, S., Kumar, M., Baboota, S., kaurSahni, J., & Ali, J. (2012). Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. European Journal of Pharmaceutical Sciences47(1), 6-15. https://doi.org/10.1016/j.ejps.2012.04.013
  • Fine, J. M., Forsberg, A. C., Renner, D. B., Faltesek, K. A., Mohan, K. G., Wong, J. C., … & Hanson, L. R. (2014). Intranasally-administered deferoxamine mitigates toxicity of 6-OHDA in a rat model of Parkinson׳ s disease. brain research1574, 96-104. https://doi.org/10.1016/j.brainres.2014.05.048
  • Frey, W. H., Liu, J., Chen, X., Thorne, R. G., Fawcett, J. R., Ala, T. A., & Rahman, Y. E. (1997). Delivery of 125I-NGF to the brain via the olfactory route. Drug Delivery4(2), 87-92. https://doi.org/10.3109/10717549709051878
  • Gajbhiye, K. R., Gajbhiye, V., &Soni, V. (2015). Targeted brain delivery of bioactive molecules using nanocarriers. Journal of Bioequivalence & Bioavailability7(3), 112. http://doi.org/10.4172/jbb.1000224
  • Ganeshpurkar, A., Ganeshpurkar, A., Agnihotri, A., Pandey, V., Vishwakarma, N., Bansal, D., & Dubey, N. (2013). Chondroitin Sulfate Surface Engineered Docetaxel-Loaded Liposomes for Tumor Targeting: Design, Development, and Characterization. In Proceedings of All India Seminar on Biomedical Engineering 2012 (AISOBE 2012) (pp. 77-82). Springer, India.
  • Gänger, S., &Schindowski, K. (2018). Tailoring formulations for intranasal nose-to-brain delivery: a review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa. Pharmaceutics10(3), 116. https://doi.org/10.3390/pharmaceutics10030116
  • Gao, H. M., Liu, B., Zhang, W., & Hong, J. S. (2003). Novel anti-inflammatory therapy for Parkinson’s disease. Trends in pharmacological sciences24(8), 395-401. https://doi.org/10.1016/S0165-6147(03)00176-7
  • Garg, T., Singh, S., & Goyal, A. (2013). Stimuli-sensitive hydrogels: an excellent carrier for drug and cell delivery. Critical Reviews™ in Therapeutic Drug Carrier Systems30(5). http://doi.org/10.1615/CritRevTherDrugCarrierSyst.2013007259
  • Gizurarson, S. (2015). The effect of cilia and the mucociliary clearance on successful drug delivery. Biological and Pharmaceutical Bulletin, b14-00398.  https://doi.org/10.1248/bpb.b14-00398
  • Hadaczek, P., Yamashita, Y., Mirek, H., Tamas, L., Bohn, M. C., Noble, C., … &Bankiewicz, K. (2006). The “perivascular pump” driven by arterial pulsation is a powerful mechanism for the distribution of therapeutic molecules within the brain. Molecular Therapy14(1), 69-78. https://doi.org/10.1016/j.ymthe.2006.02.018
  • Hong, S. S., Oh, K. T., Choi, H. G., & Lim, S. J. (2019). Liposomal formulations for nose-to-brain delivery: recent advances and future perspectives. Pharmaceutics11(10), 540. https://doi.org/10.3390/pharmaceutics11100540
  • Hsu, D. W., & Suh, J. D. (2018). Anatomy and physiology of nasal obstruction. Otolaryngologic Clinics of North America51(5), 853-865. http://doi.org/10.16/j.otc.2018.05.001
  • Huang, W. J., Chen, W. W., & Zhang, X. (2017). Multiple sclerosis: Pathology, diagnosis and treatments. Experimental and therapeutic medicine13(6), 3163-3166. https://doi.org/10.3892/etm.2017.4410
  • Jankovic, J. (2008). Parkinson’s disease: clinical features and diagnosis. Journal of neurology, neurosurgery & psychiatry79(4), 368-376. http://dx.doi.org/10.1136/jnnp.2007.131045
  • Jeong, SH., Jang, JH. & Lee, YB. Drug delivery to the brain via the nasal route of administration: exploration of key targets and major consideration factors. J. Pharm. Investig. (2022). https://doi.org/10.1007/s40005-022-00589-5
  • Kushwaha, S. K., Keshari, R. K., & Rai, A. K. (2011). Advances in nasal trans-mucosal drug delivery. Journal of applied pharmaceutical science, 21-28.
  • Lai, S. K., O’Hanlon, D. E., Harrold, S., Man, S. T., Wang, Y. Y., Cone, R., & Hanes, J. (2007). Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proceedings of the National Academy of Sciences104(5), 1482-1487. https://doi.org/10.1073/pnas.0608611104
  • Liu, X. F., Fawcett, J. R., Thorne, R. G., DeFor, T. A., & Frey II, W. H. (2001). Intranasal administration of insulin-like growth factor-I bypasses the blood–brain barrier and protects against focal cerebral ischemic damage. Journal of the neurological sciences187(1-2), 91-97. https://doi.org/10.1016/S0022-510X(01)00532-9
  • Lochhead, J. J., Wolak, D. J., Pizzo, M. E., & Thorne, R. G. (2015). Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration. Journal of Cerebral Blood Flow & Metabolism35(3), 371-381. https://doi.org/10.1038/jcbfm.2014.215
  • Marx, D., Williams, G., &Birkhoff, M. (2015). Intranasal drug administration—an attractive delivery route for some drugs. Drug Discov Dev, 299-320. http://dx.doi.org/10.5772/59468
  • Migliore, M. M., Vyas, T. K., Campbell, R. B., Amiji, M. M., &Waszczak, B. L. (2010). Brain delivery of proteins by the intranasal route of administration: a comparison of cationic liposomes versus aqueous solution formulations. Journal of pharmaceutical sciences99(4), 1745-1761. https://doi.org/10.1002/jps.21939
  • Miyake, M. M., &Bleier, B. S. (2015). The blood-brain barrier and nasal drug delivery to the central nervous system. American journal of rhinology & allergy29(2), 124-127. https://doi.org/10.2500/ajra.2015.29.4149
  • Nasal cavity. (2022). Ken Hub [Internet]. Available from: https://www.kenhub.com/en/library/anatomy/nasal-cavity
  • Nigro, C. E. N., de Aguiar Nigro, J. F., Mion, O., & Mello Jr, J. F. (2009). Nasal valve: anatomy and physiology. Brazilian Journal of Otorhinolaryngology75(2), 305-310. https://doi.org/10.1016/S1808-8694(15)30795-3
  • Oliveira, P., Fortuna, A., Alves, G., & Falcao, A. (2016). Drug-metabolizing enzymes and efflux transporters in nasal epithelium: influence on the bioavailability of intranasally administered drugs. Current drug metabolism17(7), 628-647.
  • Pandey, V., Gadeval, A., Asati, S., Jain, P., Jain, N., Roy, R. K., &Tekade, R. K. (2020). Formulation strategies for nose-to-brain delivery of therapeutic molecules. In Drug Delivery Systems (pp. 291-332). Academic Press. https://doi.org/10.1016/B978-0-12-814487-9.00007-7
  • Pardeshi, C. V., &Belgamwar, V. S. (2013). Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood–brain barrier: an excellent platform for brain targeting. Expert opinion on drug delivery10(7), 957-972. https://doi.org/10.1517/17425247.2013.790887
  • Pathak, R., Dash, R. P., Misra, M., &Nivsarkar, M. (2014). Role of mucoadhesive polymers in enhancing delivery of nimodipine microemulsion to brain via intranasal route. Acta Pharmaceutica Sinica B4(2), 151-160. https://doi.org/10.1016/j.apsb.2014.02.002
  • Pires, A., Fortuna, A., Alves, G., &Falcão, A. (2009). Intranasal drug delivery: how, why and what for?. Journal of Pharmacy & Pharmaceutical Sciences12(3), 288-311. https://doi.org/10.18433/J3NC79
  • Rai, A., Jain, A., Jain, A., Jain, A., Pandey, V., Chashoo, G., … & Sharma, P. R. (2015). Targeted SLNs for management of HIV-1 associated dementia. Drug Development and Industrial Pharmacy41(8), 1321-1327. https://doi.org/10.3109/03639045.2014.948453
  • Redzic, Z. (2011). Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences. Fluids and Barriers of the CNS8(1), 1-25. https://doi.org/10.1186/2045-8118-8-3
  • Rinaldi, F., Hanieh, P. N., Chan, L. K. N., Angeloni, L., Passeri, D., Rossi, M., … & Marianecci, C. (2018). Chitosan glutamate-coated niosomes: a proposal for nose-to-brain delivery. Pharmaceutics10(2), 38. https://doi.org/10.3390/pharmaceutics10020038
  • Ross, T. M., Martinez, P. M., Renner, J. C., Thorne, R. G., Hanson, L. R., & Frey Ii, W. H. (2004). Intranasal administration of interferon beta bypasses the blood–brain barrier to target the central nervous system and cervical lymph nodes: a non-invasive treatment strategy for multiple sclerosis. Journal of neuroimmunology151(1-2), 66-77. https://doi.org/10.1016/j.jneuroim.2004.02.011
  • S Hersh, D., S Wadajkar, A., B Roberts, N., G Perez, J., P Connolly, N., Frenkel, V., … & J Kim, A. (2016). Evolving drug delivery strategies to overcome the blood brain barrier. Current pharmaceutical design22(9), 1177-1193.
  • Sandhu, P., Rathore, D., Kataria, S., Middha, A., Brain targeting noval approaches: a comprehensive review [Internet]. Available from: https://www.pharmatutor.org/articles/brain-targeting-novel-approches-a-comprehensive-review
  • Savale, S., & Mahajan, H. (2017). Nose to brain: A versatile mode of drug delivery system. Asian J. Biomater. Res3, 16-38.
  • Schley, D., Carare-Nnadi, R., Please, C. P., Perry, V. H., & Weller, R. O. (2006). Mechanisms to explain the reverse perivascular transport of solutes out of the brain. Journal of theoretical biology238(4), 962-974. https://doi.org/10.1016/j.jtbi.2005.07.005
  • Sedlakova, R., Shivers, R. R., & Del Maestro, R. F. (1999). Ultrastructure of the blood-brain barrier in the rabbit. Journal of submicroscopic cytology and pathology31(1), 149-161. PMID: 10363362.
  • Seju, U., Kumar, A., & Sawant, K. K. (2011). Development and evaluation of olanzapine-loaded PLGA nanoparticles for nose-to-brain delivery: in vitro and in vivo studies. Acta biomaterialia7(12), 4169-4176. https://doi.org/10.1016/j.actbio.2011.07.025
  • Serralheiro, A., Alves, G., Fortuna, A., &Falcão, A. (2015). Direct nose-to-brain delivery of lamotrigine following intranasal administration to mice. International journal of pharmaceutics490(1-2), 39-46. https://doi.org/10.1016/j.ijpharm.2015.05.021
  • Shah, B., Khunt, D., Misra, M., &Padh, H. (2018). Formulation and in-vivo pharmacokinetic consideration of intranasal microemulsion and mucoadhesive microemulsion of rivastigmine for brain targeting. Pharmaceutical research35(1), 1-10. https://doi.org/10.1007/s11095-017-2279-z
  • Sigurdsson, P., Thorvaldsson, T., Gizurarson, S., & Gunnarsson, E. (1997). Olfactory absorption of insulin to the brain. Drug Delivery4(3), 195-200. https://doi.org/10.3109/10717549709051892
  • Singh, M., Thakur, V., Deshmukh, R., Sharma, A., Rathore, M. S., Kumar, A., & Mishra, N. (2018). Development and characterization of morin hydrate-loaded micellar nanocarriers for the effective management of Alzheimer’s disease. Journal of microencapsulation35(2), 137-148. https://doi.org/10.1080/02652048.2018.1441916
  • Skipor, J., Grzegorzewski, W., Einer-Jensen, N., &Wasowska, B. (2003). Local vascular pathway for progesterone transfer to the brain after nasal administration in gilts. Reprod Biol3(2), 143-59.
  • Soane, R. J., Hinchcliffe, M., Davis, S. S., & Illum, L. (2001). Clearance characteristics of chitosan-based formulations in the sheep nasal cavity. International journal of pharmaceutics217(1-2), 183-191. https://doi.org/10.1016/S0378-5173(01)00602-0
  • Sonaje, K., Lin, K. J., Tseng, M. T., Wey, S. P., Su, F. Y., Chuang, E. Y., … & Sung, H. W. (2011). Effects of chitosan-nanoparticle-mediated tight junction opening on the oral absorption of endotoxins. Biomaterials32(33), 8712-8721. https://doi.org/10.1016/j.biomaterials.2011.07.086
  • Sosnik, A., &Seremeta, K. P. (2017). Polymeric hydrogels as technology platform for drug delivery applications. Gels3(3), 25. https://doi.org/10.3390/gels3030025
  • Stefanczyk-Krzymowska, S., Krzymowski, T., Grzegorzewski, W., Wasowska, B., &Skipor, J. (2000). Humoral pathway for local transfer of the priming pheromone androstenol from the nasal cavity to the brain and hypophysis in anaesthetized gilts. Experimental Physiology85(6), 801-809. https://doi.org/10.1111/j.1469-445X.2000.02056.x
  • Takahashi, H., & Wakabayashi, K. (2005). Controversy: is Parkinson’s disease a single disease entity? Yes. Parkinsonism & Related Disorders11, S31-S37. https://doi.org/10.1016/j.parkreldis.2005.02.011
  • Tanaka, A., Furubayashi, T., Arai, M., Inoue, D., Kimura, S., Kiriyama, A., … & Yamamoto, A. (2018). Delivery of oxytocin to the brain for the treatment of autism spectrum disorder by nasal application. Molecular pharmaceutics15(3), 1105-1111.
    https://doi.org/10.1021/acs.molpharmaceut.7b00991
  • Thakur, A., Singh, P. K., Biswal, S. S., Kumar, N., Jha, C. B., Singh, G., … & Kumar, R. (2020). Drug delivery through nose: A non-invasive technique for brain targeting. Journal of Reports in Pharmaceutical Sciences9(1), 168. http://doi.org/10.4103/jrptps.JRPTPS_59_19
  • The nasal cavity. (2019). TeachMe Anatomy [Internet]. Available from: https://teachmeanatomy.info/head/organs/the-nose/nasal-cavity/
  • The nasal skeleton. (2019). TeachMe Anatomy [Internet]. Available from: https://teachmeanatomy.info/head/osteology/nasal-skeleton/
  • Thorne, R. G., Hanson, L. R., Ross, T. M., Tung, D., & Frey Ii, W. H. (2008). Delivery of interferon-β to the monkey nervous system following intranasal administration. Neuroscience152(3), 785-797. https://doi.org/10.1016/j.neuroscience.2008.01.013
  • Thorne, R. G., Pronk, G. J., Padmanabhan, V., & Frey Ii, W. H. (2004). Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience127(2), 481-496. https://doi.org/10.1016/j.neuroscience.2004.05.029
  • Tong, G. F., Qin, N., & Sun, L. W. (2017). Development and evaluation of Desvenlafaxine loaded PLGA-chitosan nanoparticles for brain delivery. Saudi pharmaceutical journal25(6), 844-851. https://doi.org/10.1016/j.jsps.2016.12.003
  • Türker, S., Onur, E., &Ózer, Y. (2004). Nasal route and drug delivery systems. Pharmacy world and Science26(3), 137-142. https://doi.org/10.1023/B:PHAR.0000026823.82950.ff
  • Upadhyay, S., Parikh, A., Joshi, P., Upadhyay, U. M., &Chotai, N. P. (2011). Intranasal drug delivery system-A glimpse to become maestro. Journal of applied pharmaceutical science, (Issue), 34-44.
  • Vyas, S. P., Goswami, S. K., & Singh, R. (1995). Liposomes based nasal delivery system of nifedipine: Development and characterization. International journal of pharmaceutics118(1), 23-30. https://doi.org/10.1016/0378-5173(94)00296-H
  • Vyas, T. K., Babbar, A. K., Sharma, R. K., Singh, S., &Misra, A. (2006). Intranasal mucoadhesive microemulsions of clonazepam: preliminary studies on brain targeting. Journal of pharmaceutical sciences95(3), 570-580. https://doi.org/10.1002/jps.20480
  • Wang, Z., Xiong, G., Tsang, W. C., Schätzlein, A. G., &Uchegbu, I. F. (2019). Nose-to-brain delivery. Journal of Pharmacology and Experimental Therapeutics370(3), 593-601. https://doi.org/10.1124/jpet.119.258152
  • Washington, N., Steele, R. J. C., Jackson, S. J., Bush, D., Mason, J., Gill, D. A., … & Rawlins, D. A. (2000). Determination of baseline human nasal pH and the effect of intranasally administered buffers. International journal of pharmaceutics198(2), 139-146. https://doi.org/10.1016/S0378-5173(99)00442-1
  • Weller, J., &Budson, A. (2018). Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Research7.http://doi.org/10.12688/f1000research.14506.1
  • Yasir, M., & Sara, U. V. S. (2014). Solid lipid nanoparticles for nose to brain delivery of haloperidol: in vitro drug release and pharmacokinetics evaluation. Acta Pharmaceutica Sinica B4(6), 454-463. https://doi.org/10.1016/j.apsb.2014.10.005

How to Cite

Manisha Vohra , Mohammad Amir , Amit Sharma and Sheetu Wadhwa. Formulation Strategies for Nose-to-Brain Drug Delivery. J. Pharm. Technol. Res. Manag.. 2022, 10, 87-102
Formulation Strategies for Nose-to-Brain Drug Delivery

Current Issue

PeriodicityBiannually
Issue-1May
Issue-2November
ISSN Print2321-2217
ISSN Online2321-2225
RNI No.CHAENG/2013/50088
OA Policy

Publisher's policy of the journal at Sherpa UK for the submitted, accepted, and published articles. Click OAPolicy

Plan-S Compliance

To check compliance, one has to use the Journal Check Tool (JCT). This tool provided by cOAlition S (European funders) for the researchers (fundee) to check the compliance with the journal.

Recommend journal to your library

You can recommend the journal being a researcher or faculty member to your library. We will post a copy of the Journal to your library on your behalf at free of cost.
Click here: Recommend Journal

Preprint Arxiv Submission

The authors are encouraged to submit the author’s copy (preprint) to appropriate preprint archives e.g. https://arxiv.org and/or on https://indiarxiv.org or institutional repositories (e.g., D Space) before paper acceptance by the editor of Journal. After publications of the paper author(s) should mention the citation information, title and abstract along with DOI number of the publication carefully on the required page of the depository(ies).

Contact: Phone: +91-172-2741000, +91-172-4691800

Email : editor.jptrm@chitkara.edu.in;

Abstract and Indexing

Information

This work is licensed under a Creative Commons Attribution 4.0 International License.

Articles in Journal of Pharmaceutical Technology, Research and Management (J. Pharm. Tech. Res. Management) by Chitkara University Publications are Open Access articles that are published with licensed under a Creative Commons Attribution- CC-BY 4.0 International License. Based on a work at https://jptrm.chitkara.edu.in/. This license permits one to use, remix, tweak and reproduction in any medium, even commercially provided one give credit for the original creation.

View Legal Code of the above-mentioned license, https://creativecommons.org/licenses/by/4.0/legalcode

View Licence Deed here https://creativecommons.org/licenses/by/4.0/

Creative Commons License

Journal of Pharmaceutical Technology, Research and Management by Chitkara University Publications is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at https://jptrm.chitkara.edu.in//

Members