Formulation Strategies for Nose-to-Brain Drug Delivery
Abstract
Background: Neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, Multiple Sclerosis, Dementia, and others are becoming more common globally due to people’s changing lifestyles. Furthermore, the presence of the Blood-Brain barrier and other limitations of oral and other routes of administration makes drug delivery to the brain somewhat tricky.As a result, numerous novel drug delivery systems are being developed for drug administration to the brain. However, nose-to-brain administration is one of the most effective, safe, and non-invasive methods.
Purpose: To discuss nose-to-brain deliveryas a novel drug delivery system in the treatment of various brain disorders and to provide information about various formulation strategies designed to deliver the drug to the brain effectively.
Methods: A preliminary search was conducted in the PubMed, OVID Medline, Embase, ScienceDirect, Web of Science, and Google Scholar databases using keywords such as “Intranasal delivery, nose-to-brain drug transport, formulations for intranasal delivery.”
Results: Various marketed formulations for nose-to-brain drug delivery are listed in this review, like naringenin, donepezil, pentamidine, rivastigmine,efavirenz, desvenlafaxine,lamotrigine, haloperidol,nimodipine, olanzapine, valproic acid, ovalbumin,clonazepam,fentanyl citrate, nifedipine in the form of poloxamer chitosan-based nano-formulation, nano-emulsion, chitosan niosomes, chitosan containing emulsion, solid-lipid nanoparticles,PLGA-chitosan nanoparticles, solution, mucoadhesive microemulsion,nanostructured lipid carriers, cationic liposomes,peptide-attached liposomes, multimellar liposomes with their research findings in treating various brain disorders.
Conclusion: This review discusses nose-to-brain drug delivery processes, the pathway for its action, advantages over other delivery routes, barriers to this system, and current formulation strategies for nose-to-brain transport.
- Page Number : 87-102
- Keywords
Nose-to-brain delivery, Novel drug delivery, Formulation strategies, Neurological disorders - DOI Number
10.15415/jptrm.2022.101008 -
Authors
- Manisha Vohra
- Mohammad Amir
- Amit Sharma
- Sheetu Wadhwa
References
- Abbott, N. J., Patabendige, A. A., Dolman, D. E., Yusof, S. R., & Begley, D. J. (2010). Structure and function of the blood–brain barrier. Neurobiology of disease, 37(1), 13-25. https://doi.org/10.1016/j.nbd.2009.07.030
- Aderibigbe B. A. (2018). In Situ-Based Gels for Nose to Brain Delivery for the Treatment of Neurological Diseases. Pharmaceutics, 10(2), 40. https://doi.org/10.3390/pharmaceutics10020040
- Agu, R. U. (2016). Challenges in nasal drug absorption: how far have we come?. Therapeutic delivery, 7(7), 495-510. https://doi.org/10.4155/tde-2016-0022
- Ahmad, N., Ahmad, R., Ahmad, F. J., Ahmad, W., Alam, M. A., Amir, M., & Ali, A. (2020). Poloxamer-chitosan-based Naringenin nano-formulation used in brain targeting for the treatment of cerebral ischemia. Saudi Journal of Biological Sciences, 27(1), 500-517. https://doi.org/10.1016/j.sjbs.2019.11.008
- Alsarra, I. A., Hamed, A. Y., &Alanazi, F. K. (2008). Acyclovir liposomes for intranasal systemic delivery: development and pharmacokinetics evaluation. Drug delivery, 15(5), 313-321. https://doi.org/10.1080/10717540802035251
- Amidi, M., Mastrobattista, E., Jiskoot, W., & Hennink, W. E. (2010). Chitosan-based delivery systems for protein therapeutics and antigens. Advanced drug delivery reviews, 62(1), 59-82. https://doi.org/10.1016/j.addr.2009.11.009
- Bansal, D., Yadav, K., Pandey, V., Ganeshpurkar, A., Agnihotri, A., & Dubey, N. (2016). Lactobionic acid coupled liposomes: an innovative strategy for targeting hepatocellular carcinoma. Drug delivery, 23(1), 140-146. https://doi.org/10.3109/10717544.2014.907373
- Benedict, C., Frey II, W. H., Schiöth, H. B., Schultes, B., Born, J., &Hallschmid, M. (2011). Intranasal insulin as a therapeutic option in the treatment of cognitive impairments. Experimental gerontology, 46(2-3), 112-115. https://doi.org/10.1016/j.exger.2010.08.026
- Berardelli, A., Rothwell, J. C., Thompson, P. D., & Hallett, M. (2001). Pathophysiology of bradykinesia in Parkinson’s disease. Brain, 124(11), 2131-2146. https://doi.org/10.1093/brain/124.11.2131
- Bhise, S. B., Yadav, A. V., Avachat, A. M., &Malayandi, R. (2008). Bioavailability of intranasal drug delivery system. Asian Journal of Pharmaceutics (AJP), 2(4). https://doi.org/10.22377/ajp.v2i4.203
- Borlongan, C. V., &Emerich, D. F. (2003). Facilitation of drug entry into the CNS via transient permeation of blood brain barrier: laboratory and preliminary clinical evidence from bradykinin receptor agonist, Cereport. Brain research bulletin, 60(3), 297-306. https://doi.org/10.1016/S0361-9230(03)00043-1
- Bors, L. A., &Erdő, F. (2019). Overcoming the blood–brain barrier. challenges and tricks for CNS drug delivery. Scientia Pharmaceutica, 87(1), 6. https://doi.org/10.3390/scipharm87010006
- Chaturvedi, M., Kumar, M., & Pathak, K. (2011). A review on mucoadhesive polymer used in nasal drug delivery system. Journal of advanced pharmaceutical technology & research, 2(4), 215. http://doi.org/10.4103/2231-4040.90876
- Clementino, A., Batger, M., Garrastazu, G., Pozzoli, M., Del Favero, E., Rondelli, V., ... &Sonvico, F. (2016). The nasal delivery of nanoencapsulated statins–an approach for brain delivery. International journal of nanomedicine, 11, 6575. http://doi.org/10.2147/IJN.S119033
- Clerico, D. M., To, W. C., & Lanza, D. C. (2003). Anatomy of the human nasal passages. Neurological Disease and Therapy, 57, 1-16.
- Corbo, D. C., Liu, J. C., & Chien, Y. W. (1990). Characterization of the barrier properties of mucosal membranes. Journal of pharmaceutical sciences, 79(3), 202-206. https://doi.org/10.1002/jps.2600790304
- Costantino, H. R., Illum, L., Brandt, G., Johnson, P. H., & Quay, S. C. (2007). Intranasal delivery: physicochemical and therapeutic aspects. International journal of pharmaceutics, 337(1-2), 1-24. https://doi.org/10.1016/j.ijpharm.2007.03.025
- Crowe, T. P., Greenlee, M. H. W., Kanthasamy, A. G., & Hsu, W. H. (2018). Mechanism of intranasal drug delivery directly to the brain. Life sciences, 195, 44-52. https://doi.org/10.1016/j.lfs.2017.12.025
- Dalpiaz, A., Gavini, E., Colombo, G., Russo, P., Bortolotti, F., Ferraro, L., ... &Giunchedi, P. (2008). Brain uptake of an anti-ischemic agent by nasal administration of microparticles. Journal of pharmaceutical sciences, 97(11), 4889-4903. https://doi.org/10.1002/jps.21335
- Danielyan, L., Schäfer, R., von Ameln-Mayerhofer, A., Bernhard, F., Verleysdonk, S., Buadze, M., ... & Frey, W. H. (2011). Therapeutic efficacy of intranasally delivered mesenchymal stem cells in a rat model of Parkinson disease. Rejuvenation research, 14(1), 3-16. https://doi.org/10.1089/rej.2010.1130
- Dhakar, R. C. (2011). Nasal drug delivery: success through integrated device development. Journal of Drug Delivery and Therapeutics, 1(1).https://doi.org/10.22270/jddt.v1i1.3
- Dhuria, S. V., Hanson, L. R., & Frey, W. H. (2009). Novel vasoconstrictor formulation to enhance intranasal targeting of neuropeptide therapeutics to the central nervous system. Journal of Pharmacology and Experimental Therapeutics, 328(1), 312-320. https://doi.org/10.1124/jpet.108.145565
- Dimiou, S., Lopes, R. M., Kubajewska, I., Mellor, R. D., Schlosser, C. S., Shet, M. S., Huang, H., Akcan, O., Whiteside, G. T., Schätzlein, A. G., &Uchegbu, I. F. (2022). Particulate levodopa nose-to-brain delivery targets dopamine to the brain with no plasma exposure. International journal of pharmaceutics, 618, 121658. https://doi.org/10.1016/j.ijpharm.2022.121658
- Dimova, S., Brewster, M. E., Noppe, M., Jorissen, M., &Augustijns, P. (2005). The use of human nasal in vitro cell systems during drug discovery and development. Toxicology in vitro, 19(1), 107-122. https://doi.org/10.1016/j.tiv.2004.07.003
- Djupesland, P. G., Chatkin, J. M., Qian, W., & Haight, J. S. (2001). Nitric oxide in the nasal airway: a new dimension in otorhinolaryngology. American journal of otolaryngology, 22(1), 19-32. https://doi.org/10.1053/ajot.2001.20700
- Dong, X. (2018). Current strategies for brain drug delivery. Theranostics, 8(6), 1481. http://doi.org/10.7150/thno.21254
- Einer-Jensen, N., & Hunter, R. H. F. (2005). Counter-current transfer in reproductive biology. Reproduction, 129(1), 9-18. https://doi.org/10.1530/rep.1.00278
- Erdő, F., Bors, L. A., Farkas, D., Bajza, Á., &Gizurarson, S. (2018). Evaluation of intranasal delivery route of drug administration for brain targeting. Brain research bulletin, 143, 155-170. https://doi.org/10.1016/j.brainresbull.2018.10.009
- Eskandari, S., Varshosaz, J., Minaiyan, M., & Tabbakhian, M. (2011). Brain delivery of valproic acid via intranasal administration of nanostructured lipid carriers: in vivo pharmacodynamic studies using rat electroshock model. International journal of nanomedicine, 6, 363. http://doi.org/10.2147/IJN.S15881
- Espinoza, L. C., Silva-Abreu, M., Clares, B., Rodríguez-Lagunas, M. J., Halbaut, L., Cañas, M. A., &Calpena, A. C. (2019). Formulation strategies to improve nose-to-brain delivery of donepezil. Pharmaceutics, 11(2), 64. https://doi.org/10.3390/pharmaceutics11020064
- Fazil, M., Md, S., Haque, S., Kumar, M., Baboota, S., kaurSahni, J., & Ali, J. (2012). Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. European Journal of Pharmaceutical Sciences, 47(1), 6-15. https://doi.org/10.1016/j.ejps.2012.04.013
- Fine, J. M., Forsberg, A. C., Renner, D. B., Faltesek, K. A., Mohan, K. G., Wong, J. C., ... & Hanson, L. R. (2014). Intranasally-administered deferoxamine mitigates toxicity of 6-OHDA in a rat model of Parkinson׳ s disease. brain research, 1574, 96-104. https://doi.org/10.1016/j.brainres.2014.05.048
- Frey, W. H., Liu, J., Chen, X., Thorne, R. G., Fawcett, J. R., Ala, T. A., & Rahman, Y. E. (1997). Delivery of 125I-NGF to the brain via the olfactory route. Drug Delivery, 4(2), 87-92. https://doi.org/10.3109/10717549709051878
- Gajbhiye, K. R., Gajbhiye, V., &Soni, V. (2015). Targeted brain delivery of bioactive molecules using nanocarriers. Journal of Bioequivalence & Bioavailability, 7(3), 112. http://doi.org/10.4172/jbb.1000224
- Ganeshpurkar, A., Ganeshpurkar, A., Agnihotri, A., Pandey, V., Vishwakarma, N., Bansal, D., & Dubey, N. (2013). Chondroitin Sulfate Surface Engineered Docetaxel-Loaded Liposomes for Tumor Targeting: Design, Development, and Characterization. In Proceedings of All India Seminar on Biomedical Engineering 2012 (AISOBE 2012) (pp. 77-82). Springer, India.
- Gänger, S., &Schindowski, K. (2018). Tailoring formulations for intranasal nose-to-brain delivery: a review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa. Pharmaceutics, 10(3), 116. https://doi.org/10.3390/pharmaceutics10030116
- Gao, H. M., Liu, B., Zhang, W., & Hong, J. S. (2003). Novel anti-inflammatory therapy for Parkinson’s disease. Trends in pharmacological sciences, 24(8), 395-401. https://doi.org/10.1016/S0165-6147(03)00176-7
- Garg, T., Singh, S., & Goyal, A. (2013). Stimuli-sensitive hydrogels: an excellent carrier for drug and cell delivery. Critical Reviews™ in Therapeutic Drug Carrier Systems, 30(5). http://doi.org/10.1615/CritRevTherDrugCarrierSyst.2013007259
- Gizurarson, S. (2015). The effect of cilia and the mucociliary clearance on successful drug delivery. Biological and Pharmaceutical Bulletin, b14-00398. https://doi.org/10.1248/bpb.b14-00398
- Hadaczek, P., Yamashita, Y., Mirek, H., Tamas, L., Bohn, M. C., Noble, C., ... &Bankiewicz, K. (2006). The “perivascular pump” driven by arterial pulsation is a powerful mechanism for the distribution of therapeutic molecules within the brain. Molecular Therapy, 14(1), 69-78. https://doi.org/10.1016/j.ymthe.2006.02.018
- Hong, S. S., Oh, K. T., Choi, H. G., & Lim, S. J. (2019). Liposomal formulations for nose-to-brain delivery: recent advances and future perspectives. Pharmaceutics, 11(10), 540. https://doi.org/10.3390/pharmaceutics11100540
- Hsu, D. W., & Suh, J. D. (2018). Anatomy and physiology of nasal obstruction. Otolaryngologic Clinics of North America, 51(5), 853-865. http://doi.org/10.16/j.otc.2018.05.001
- Huang, W. J., Chen, W. W., & Zhang, X. (2017). Multiple sclerosis: Pathology, diagnosis and treatments. Experimental and therapeutic medicine, 13(6), 3163-3166. https://doi.org/10.3892/etm.2017.4410
- Jankovic, J. (2008). Parkinson’s disease: clinical features and diagnosis. Journal of neurology, neurosurgery & psychiatry, 79(4), 368-376. http://dx.doi.org/10.1136/jnnp.2007.131045
- Jeong, SH., Jang, JH. & Lee, YB. Drug delivery to the brain via the nasal route of administration: exploration of key targets and major consideration factors. J. Pharm. Investig. (2022). https://doi.org/10.1007/s40005-022-00589-5
- Kushwaha, S. K., Keshari, R. K., & Rai, A. K. (2011). Advances in nasal trans-mucosal drug delivery. Journal of applied pharmaceutical science, 21-28.
- Lai, S. K., O’Hanlon, D. E., Harrold, S., Man, S. T., Wang, Y. Y., Cone, R., & Hanes, J. (2007). Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proceedings of the National Academy of Sciences, 104(5), 1482-1487. https://doi.org/10.1073/pnas.0608611104
- Liu, X. F., Fawcett, J. R., Thorne, R. G., DeFor, T. A., & Frey II, W. H. (2001). Intranasal administration of insulin-like growth factor-I bypasses the blood–brain barrier and protects against focal cerebral ischemic damage. Journal of the neurological sciences, 187(1-2), 91-97. https://doi.org/10.1016/S0022-510X(01)00532-9
- Lochhead, J. J., Wolak, D. J., Pizzo, M. E., & Thorne, R. G. (2015). Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration. Journal of Cerebral Blood Flow & Metabolism, 35(3), 371-381. https://doi.org/10.1038/jcbfm.2014.215
- Marx, D., Williams, G., &Birkhoff, M. (2015). Intranasal drug administration—an attractive delivery route for some drugs. Drug Discov Dev, 299-320. http://dx.doi.org/10.5772/59468
- Migliore, M. M., Vyas, T. K., Campbell, R. B., Amiji, M. M., &Waszczak, B. L. (2010). Brain delivery of proteins by the intranasal route of administration: a comparison of cationic liposomes versus aqueous solution formulations. Journal of pharmaceutical sciences, 99(4), 1745-1761. https://doi.org/10.1002/jps.21939
- Miyake, M. M., &Bleier, B. S. (2015). The blood-brain barrier and nasal drug delivery to the central nervous system. American journal of rhinology & allergy, 29(2), 124-127. https://doi.org/10.2500/ajra.2015.29.4149
- Nasal cavity. (2022). Ken Hub [Internet]. Available from: https://www.kenhub.com/en/library/anatomy/nasal-cavity
- Nigro, C. E. N., de Aguiar Nigro, J. F., Mion, O., & Mello Jr, J. F. (2009). Nasal valve: anatomy and physiology. Brazilian Journal of Otorhinolaryngology, 75(2), 305-310. https://doi.org/10.1016/S1808-8694(15)30795-3
- Oliveira, P., Fortuna, A., Alves, G., & Falcao, A. (2016). Drug-metabolizing enzymes and efflux transporters in nasal epithelium: influence on the bioavailability of intranasally administered drugs. Current drug metabolism, 17(7), 628-647.
- Pandey, V., Gadeval, A., Asati, S., Jain, P., Jain, N., Roy, R. K., &Tekade, R. K. (2020). Formulation strategies for nose-to-brain delivery of therapeutic molecules. In Drug Delivery Systems (pp. 291-332). Academic Press. https://doi.org/10.1016/B978-0-12-814487-9.00007-7
- Pardeshi, C. V., &Belgamwar, V. S. (2013). Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood–brain barrier: an excellent platform for brain targeting. Expert opinion on drug delivery, 10(7), 957-972. https://doi.org/10.1517/17425247.2013.790887
- Pathak, R., Dash, R. P., Misra, M., &Nivsarkar, M. (2014). Role of mucoadhesive polymers in enhancing delivery of nimodipine microemulsion to brain via intranasal route. Acta Pharmaceutica Sinica B, 4(2), 151-160. https://doi.org/10.1016/j.apsb.2014.02.002
- Pires, A., Fortuna, A., Alves, G., &Falcão, A. (2009). Intranasal drug delivery: how, why and what for?. Journal of Pharmacy & Pharmaceutical Sciences, 12(3), 288-311. https://doi.org/10.18433/J3NC79
- Rai, A., Jain, A., Jain, A., Jain, A., Pandey, V., Chashoo, G., ... & Sharma, P. R. (2015). Targeted SLNs for management of HIV-1 associated dementia. Drug Development and Industrial Pharmacy, 41(8), 1321-1327. https://doi.org/10.3109/03639045.2014.948453
- Redzic, Z. (2011). Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences. Fluids and Barriers of the CNS, 8(1), 1-25. https://doi.org/10.1186/2045-8118-8-3
- Rinaldi, F., Hanieh, P. N., Chan, L. K. N., Angeloni, L., Passeri, D., Rossi, M., ... & Marianecci, C. (2018). Chitosan glutamate-coated niosomes: a proposal for nose-to-brain delivery. Pharmaceutics, 10(2), 38. https://doi.org/10.3390/pharmaceutics10020038
- Ross, T. M., Martinez, P. M., Renner, J. C., Thorne, R. G., Hanson, L. R., & Frey Ii, W. H. (2004). Intranasal administration of interferon beta bypasses the blood–brain barrier to target the central nervous system and cervical lymph nodes: a non-invasive treatment strategy for multiple sclerosis. Journal of neuroimmunology, 151(1-2), 66-77. https://doi.org/10.1016/j.jneuroim.2004.02.011
- S Hersh, D., S Wadajkar, A., B Roberts, N., G Perez, J., P Connolly, N., Frenkel, V., ... & J Kim, A. (2016). Evolving drug delivery strategies to overcome the blood brain barrier. Current pharmaceutical design, 22(9), 1177-1193.
- Sandhu, P., Rathore, D., Kataria, S., Middha, A., Brain targeting noval approaches: a comprehensive review [Internet]. Available from: https://www.pharmatutor.org/articles/brain-targeting-novel-approches-a-comprehensive-review
- Savale, S., & Mahajan, H. (2017). Nose to brain: A versatile mode of drug delivery system. Asian J. Biomater. Res, 3, 16-38.
- Schley, D., Carare-Nnadi, R., Please, C. P., Perry, V. H., & Weller, R. O. (2006). Mechanisms to explain the reverse perivascular transport of solutes out of the brain. Journal of theoretical biology, 238(4), 962-974. https://doi.org/10.1016/j.jtbi.2005.07.005
- Sedlakova, R., Shivers, R. R., & Del Maestro, R. F. (1999). Ultrastructure of the blood-brain barrier in the rabbit. Journal of submicroscopic cytology and pathology, 31(1), 149-161. PMID: 10363362.
- Seju, U., Kumar, A., & Sawant, K. K. (2011). Development and evaluation of olanzapine-loaded PLGA nanoparticles for nose-to-brain delivery: in vitro and in vivo studies. Acta biomaterialia, 7(12), 4169-4176. https://doi.org/10.1016/j.actbio.2011.07.025
- Serralheiro, A., Alves, G., Fortuna, A., &Falcão, A. (2015). Direct nose-to-brain delivery of lamotrigine following intranasal administration to mice. International journal of pharmaceutics, 490(1-2), 39-46. https://doi.org/10.1016/j.ijpharm.2015.05.021
- Shah, B., Khunt, D., Misra, M., &Padh, H. (2018). Formulation and in-vivo pharmacokinetic consideration of intranasal microemulsion and mucoadhesive microemulsion of rivastigmine for brain targeting. Pharmaceutical research, 35(1), 1-10. https://doi.org/10.1007/s11095-017-2279-z
- Sigurdsson, P., Thorvaldsson, T., Gizurarson, S., & Gunnarsson, E. (1997). Olfactory absorption of insulin to the brain. Drug Delivery, 4(3), 195-200. https://doi.org/10.3109/10717549709051892
- Singh, M., Thakur, V., Deshmukh, R., Sharma, A., Rathore, M. S., Kumar, A., & Mishra, N. (2018). Development and characterization of morin hydrate-loaded micellar nanocarriers for the effective management of Alzheimer’s disease. Journal of microencapsulation, 35(2), 137-148. https://doi.org/10.1080/02652048.2018.1441916
- Skipor, J., Grzegorzewski, W., Einer-Jensen, N., &Wasowska, B. (2003). Local vascular pathway for progesterone transfer to the brain after nasal administration in gilts. Reprod Biol, 3(2), 143-59.
- Soane, R. J., Hinchcliffe, M., Davis, S. S., & Illum, L. (2001). Clearance characteristics of chitosan-based formulations in the sheep nasal cavity. International journal of pharmaceutics, 217(1-2), 183-191. https://doi.org/10.1016/S0378-5173(01)00602-0
- Sonaje, K., Lin, K. J., Tseng, M. T., Wey, S. P., Su, F. Y., Chuang, E. Y., ... & Sung, H. W. (2011). Effects of chitosan-nanoparticle-mediated tight junction opening on the oral absorption of endotoxins. Biomaterials, 32(33), 8712-8721. https://doi.org/10.1016/j.biomaterials.2011.07.086
- Sosnik, A., &Seremeta, K. P. (2017). Polymeric hydrogels as technology platform for drug delivery applications. Gels, 3(3), 25. https://doi.org/10.3390/gels3030025
- Stefanczyk-Krzymowska, S., Krzymowski, T., Grzegorzewski, W., Wasowska, B., &Skipor, J. (2000). Humoral pathway for local transfer of the priming pheromone androstenol from the nasal cavity to the brain and hypophysis in anaesthetized gilts. Experimental Physiology, 85(6), 801-809. https://doi.org/10.1111/j.1469-445X.2000.02056.x
- Takahashi, H., & Wakabayashi, K. (2005). Controversy: is Parkinson's disease a single disease entity? Yes. Parkinsonism & Related Disorders, 11, S31-S37. https://doi.org/10.1016/j.parkreldis.2005.02.011
- Tanaka, A., Furubayashi, T., Arai, M., Inoue, D., Kimura, S., Kiriyama, A., ... & Yamamoto, A. (2018). Delivery of oxytocin to the brain for the treatment of autism spectrum disorder by nasal application. Molecular pharmaceutics, 15(3), 1105-1111.
https://doi.org/10.1021/acs.molpharmaceut.7b00991
- Thakur, A., Singh, P. K., Biswal, S. S., Kumar, N., Jha, C. B., Singh, G., ... & Kumar, R. (2020). Drug delivery through nose: A non-invasive technique for brain targeting. Journal of Reports in Pharmaceutical Sciences, 9(1), 168. http://doi.org/10.4103/jrptps.JRPTPS_59_19
- The nasal cavity. (2019). TeachMe Anatomy [Internet]. Available from: https://teachmeanatomy.info/head/organs/the-nose/nasal-cavity/
- The nasal skeleton. (2019). TeachMe Anatomy [Internet]. Available from: https://teachmeanatomy.info/head/osteology/nasal-skeleton/
- Thorne, R. G., Hanson, L. R., Ross, T. M., Tung, D., & Frey Ii, W. H. (2008). Delivery of interferon-β to the monkey nervous system following intranasal administration. Neuroscience, 152(3), 785-797. https://doi.org/10.1016/j.neuroscience.2008.01.013
- Thorne, R. G., Pronk, G. J., Padmanabhan, V., & Frey Ii, W. H. (2004). Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience, 127(2), 481-496. https://doi.org/10.1016/j.neuroscience.2004.05.029
- Tong, G. F., Qin, N., & Sun, L. W. (2017). Development and evaluation of Desvenlafaxine loaded PLGA-chitosan nanoparticles for brain delivery. Saudi pharmaceutical journal, 25(6), 844-851. https://doi.org/10.1016/j.jsps.2016.12.003
- Türker, S., Onur, E., &Ózer, Y. (2004). Nasal route and drug delivery systems. Pharmacy world and Science, 26(3), 137-142. https://doi.org/10.1023/B:PHAR.0000026823.82950.ff
- Upadhyay, S., Parikh, A., Joshi, P., Upadhyay, U. M., &Chotai, N. P. (2011). Intranasal drug delivery system-A glimpse to become maestro. Journal of applied pharmaceutical science, (Issue), 34-44.
- Vyas, S. P., Goswami, S. K., & Singh, R. (1995). Liposomes based nasal delivery system of nifedipine: Development and characterization. International journal of pharmaceutics, 118(1), 23-30. https://doi.org/10.1016/0378-5173(94)00296-H
- Vyas, T. K., Babbar, A. K., Sharma, R. K., Singh, S., &Misra, A. (2006). Intranasal mucoadhesive microemulsions of clonazepam: preliminary studies on brain targeting. Journal of pharmaceutical sciences, 95(3), 570-580. https://doi.org/10.1002/jps.20480
- Wang, Z., Xiong, G., Tsang, W. C., Schätzlein, A. G., &Uchegbu, I. F. (2019). Nose-to-brain delivery. Journal of Pharmacology and Experimental Therapeutics, 370(3), 593-601. https://doi.org/10.1124/jpet.119.258152
- Washington, N., Steele, R. J. C., Jackson, S. J., Bush, D., Mason, J., Gill, D. A., ... & Rawlins, D. A. (2000). Determination of baseline human nasal pH and the effect of intranasally administered buffers. International journal of pharmaceutics, 198(2), 139-146. https://doi.org/10.1016/S0378-5173(99)00442-1
- Weller, J., &Budson, A. (2018). Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Research, 7.http://doi.org/10.12688/f1000research.14506.1
- Yasir, M., & Sara, U. V. S. (2014). Solid lipid nanoparticles for nose to brain delivery of haloperidol: in vitro drug release and pharmacokinetics evaluation. Acta Pharmaceutica Sinica B, 4(6), 454-463. https://doi.org/10.1016/j.apsb.2014.10.005
Published Date : 2022-05-07