Formulation Strategies for Nose-to-Brain Drug Delivery

Abstract

Background: Neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, Multiple Sclerosis, Dementia, and others are becoming more common globally due to people’s changing lifestyles. Furthermore, the presence of the Blood-Brain barrier and other limitations of oral and other routes of administration makes drug delivery to the brain somewhat tricky.As a result, numerous novel drug delivery systems are being developed for drug administration to the brain. However, nose-to-brain administration is one of the most effective, safe, and non-invasive methods.

Purpose: To discuss nose-to-brain deliveryas a novel drug delivery system in the treatment of various brain disorders and to provide information about various formulation strategies designed to deliver the drug to the brain effectively.

Methods: A preliminary search was conducted in the PubMed, OVID Medline, Embase, ScienceDirect, Web of Science, and Google Scholar databases using keywords such as “Intranasal delivery, nose-to-brain drug transport, formulations for intranasal delivery.”

Results: Various marketed formulations for nose-to-brain drug delivery are listed in this review, like naringenin, donepezil, pentamidine, rivastigmine,efavirenz, desvenlafaxine,lamotrigine, haloperidol,nimodipine, olanzapine, valproic acid, ovalbumin,clonazepam,fentanyl citrate, nifedipine in the form of poloxamer chitosan-based nano-formulation, nano-emulsion, chitosan niosomes, chitosan containing emulsion, solid-lipid nanoparticles,PLGA-chitosan nanoparticles, solution, mucoadhesive microemulsion,nanostructured lipid carriers, cationic liposomes,peptide-attached liposomes, multimellar liposomes with their research findings in treating various brain disorders.

Conclusion: This review discusses nose-to-brain drug delivery processes, the pathway for its action, advantages over other delivery routes, barriers to this system, and current formulation strategies for nose-to-brain transport.

  • Page Number : 87-102
  • Keywords
    Nose-to-brain delivery, Novel drug delivery, Formulation strategies, Neurological disorders
  • DOI Number
    10.15415/jptrm.2022.101008
  • Authors
    • Manisha Vohra
    • Mohammad Amir
    • Amit Sharma
    • Sheetu Wadhwa

References

  • Abbott, N. J., Patabendige, A. A., Dolman, D. E., Yusof, S. R., & Begley, D. J. (2010). Structure and function of the blood–brain barrier. Neurobiology of disease37(1), 13-25. https://doi.org/10.1016/j.nbd.2009.07.030
  • Aderibigbe B. A. (2018). In Situ-Based Gels for Nose to Brain Delivery for the Treatment of Neurological Diseases. Pharmaceutics10(2), 40. https://doi.org/10.3390/pharmaceutics10020040
  • Agu, R. U. (2016). Challenges in nasal drug absorption: how far have we come?. Therapeutic delivery7(7), 495-510. https://doi.org/10.4155/tde-2016-0022
  • Ahmad, N., Ahmad, R., Ahmad, F. J., Ahmad, W., Alam, M. A., Amir, M., & Ali, A. (2020). Poloxamer-chitosan-based Naringenin nano-formulation used in brain targeting for the treatment of cerebral ischemia. Saudi Journal of Biological Sciences27(1), 500-517. https://doi.org/10.1016/j.sjbs.2019.11.008
  • Alsarra, I. A., Hamed, A. Y., &Alanazi, F. K. (2008). Acyclovir liposomes for intranasal systemic delivery: development and pharmacokinetics evaluation. Drug delivery15(5), 313-321. https://doi.org/10.1080/10717540802035251
  • Amidi, M., Mastrobattista, E., Jiskoot, W., & Hennink, W. E. (2010). Chitosan-based delivery systems for protein therapeutics and antigens. Advanced drug delivery reviews62(1), 59-82. https://doi.org/10.1016/j.addr.2009.11.009
  • Bansal, D., Yadav, K., Pandey, V., Ganeshpurkar, A., Agnihotri, A., & Dubey, N. (2016). Lactobionic acid coupled liposomes: an innovative strategy for targeting hepatocellular carcinoma. Drug delivery23(1), 140-146. https://doi.org/10.3109/10717544.2014.907373
  • Benedict, C., Frey II, W. H., Schiöth, H. B., Schultes, B., Born, J., &Hallschmid, M. (2011). Intranasal insulin as a therapeutic option in the treatment of cognitive impairments. Experimental gerontology46(2-3), 112-115. https://doi.org/10.1016/j.exger.2010.08.026
  • Berardelli, A., Rothwell, J. C., Thompson, P. D., & Hallett, M. (2001). Pathophysiology of bradykinesia in Parkinson’s disease. Brain124(11), 2131-2146. https://doi.org/10.1093/brain/124.11.2131
  • Bhise, S. B., Yadav, A. V., Avachat, A. M., &Malayandi, R. (2008). Bioavailability of intranasal drug delivery system. Asian Journal of Pharmaceutics (AJP)2(4). https://doi.org/10.22377/ajp.v2i4.203
  • Borlongan, C. V., &Emerich, D. F. (2003). Facilitation of drug entry into the CNS via transient permeation of blood brain barrier: laboratory and preliminary clinical evidence from bradykinin receptor agonist, Cereport. Brain research bulletin60(3), 297-306. https://doi.org/10.1016/S0361-9230(03)00043-1
  • Bors, L. A., &Erdő, F. (2019). Overcoming the blood–brain barrier. challenges and tricks for CNS drug delivery. Scientia Pharmaceutica87(1), 6. https://doi.org/10.3390/scipharm87010006
  • Chaturvedi, M., Kumar, M., & Pathak, K. (2011). A review on mucoadhesive polymer used in nasal drug delivery system. Journal of advanced pharmaceutical technology & research2(4), 215. http://doi.org/10.4103/2231-4040.90876
  • Clementino, A., Batger, M., Garrastazu, G., Pozzoli, M., Del Favero, E., Rondelli, V., ... &Sonvico, F. (2016). The nasal delivery of nanoencapsulated statins–an approach for brain delivery. International journal of nanomedicine11, 6575. http://doi.org/10.2147/IJN.S119033
  • Clerico, D. M., To, W. C., & Lanza, D. C. (2003). Anatomy of the human nasal passages. Neurological Disease and Therapy57, 1-16.
  • Corbo, D. C., Liu, J. C., & Chien, Y. W. (1990). Characterization of the barrier properties of mucosal membranes. Journal of pharmaceutical sciences79(3), 202-206. https://doi.org/10.1002/jps.2600790304
  • Costantino, H. R., Illum, L., Brandt, G., Johnson, P. H., & Quay, S. C. (2007). Intranasal delivery: physicochemical and therapeutic aspects. International journal of pharmaceutics337(1-2), 1-24. https://doi.org/10.1016/j.ijpharm.2007.03.025
  • Crowe, T. P., Greenlee, M. H. W., Kanthasamy, A. G., & Hsu, W. H. (2018). Mechanism of intranasal drug delivery directly to the brain. Life sciences195, 44-52. https://doi.org/10.1016/j.lfs.2017.12.025
  • Dalpiaz, A., Gavini, E., Colombo, G., Russo, P., Bortolotti, F., Ferraro, L., ... &Giunchedi, P. (2008). Brain uptake of an anti-ischemic agent by nasal administration of microparticles. Journal of pharmaceutical sciences97(11), 4889-4903. https://doi.org/10.1002/jps.21335
  • Danielyan, L., Schäfer, R., von Ameln-Mayerhofer, A., Bernhard, F., Verleysdonk, S., Buadze, M., ... & Frey, W. H. (2011). Therapeutic efficacy of intranasally delivered mesenchymal stem cells in a rat model of Parkinson disease. Rejuvenation research14(1), 3-16. https://doi.org/10.1089/rej.2010.1130
  • Dhakar, R. C. (2011). Nasal drug delivery: success through integrated device development. Journal of Drug Delivery and Therapeutics1(1).https://doi.org/10.22270/jddt.v1i1.3
  • Dhuria, S. V., Hanson, L. R., & Frey, W. H. (2009). Novel vasoconstrictor formulation to enhance intranasal targeting of neuropeptide therapeutics to the central nervous system. Journal of Pharmacology and Experimental Therapeutics328(1), 312-320. https://doi.org/10.1124/jpet.108.145565
  • Dimiou, S., Lopes, R. M., Kubajewska, I., Mellor, R. D., Schlosser, C. S., Shet, M. S., Huang, H., Akcan, O., Whiteside, G. T., Schätzlein, A. G., &Uchegbu, I. F. (2022). Particulate levodopa nose-to-brain delivery targets dopamine to the brain with no plasma exposure. International journal of pharmaceutics618, 121658. https://doi.org/10.1016/j.ijpharm.2022.121658
  • Dimova, S., Brewster, M. E., Noppe, M., Jorissen, M., &Augustijns, P. (2005). The use of human nasal in vitro cell systems during drug discovery and development. Toxicology in vitro19(1), 107-122. https://doi.org/10.1016/j.tiv.2004.07.003
  • Djupesland, P. G., Chatkin, J. M., Qian, W., & Haight, J. S. (2001). Nitric oxide in the nasal airway: a new dimension in otorhinolaryngology. American journal of otolaryngology22(1), 19-32. https://doi.org/10.1053/ajot.2001.20700
  • Dong, X. (2018). Current strategies for brain drug delivery. Theranostics8(6), 1481. http://doi.org/10.7150/thno.21254
  • Einer-Jensen, N., & Hunter, R. H. F. (2005). Counter-current transfer in reproductive biology. Reproduction129(1), 9-18. https://doi.org/10.1530/rep.1.00278
  • Erdő, F., Bors, L. A., Farkas, D., Bajza, Á., &Gizurarson, S. (2018). Evaluation of intranasal delivery route of drug administration for brain targeting. Brain research bulletin143, 155-170. https://doi.org/10.1016/j.brainresbull.2018.10.009
  • Eskandari, S., Varshosaz, J., Minaiyan, M., & Tabbakhian, M. (2011). Brain delivery of valproic acid via intranasal administration of nanostructured lipid carriers: in vivo pharmacodynamic studies using rat electroshock model. International journal of nanomedicine6, 363. http://doi.org/10.2147/IJN.S15881
  • Espinoza, L. C., Silva-Abreu, M., Clares, B., Rodríguez-Lagunas, M. J., Halbaut, L., Cañas, M. A., &Calpena, A. C. (2019). Formulation strategies to improve nose-to-brain delivery of donepezil. Pharmaceutics11(2), 64. https://doi.org/10.3390/pharmaceutics11020064
  • Fazil, M., Md, S., Haque, S., Kumar, M., Baboota, S., kaurSahni, J., & Ali, J. (2012). Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. European Journal of Pharmaceutical Sciences47(1), 6-15. https://doi.org/10.1016/j.ejps.2012.04.013
  • Fine, J. M., Forsberg, A. C., Renner, D. B., Faltesek, K. A., Mohan, K. G., Wong, J. C., ... & Hanson, L. R. (2014). Intranasally-administered deferoxamine mitigates toxicity of 6-OHDA in a rat model of Parkinson׳ s disease. brain research1574, 96-104. https://doi.org/10.1016/j.brainres.2014.05.048
  • Frey, W. H., Liu, J., Chen, X., Thorne, R. G., Fawcett, J. R., Ala, T. A., & Rahman, Y. E. (1997). Delivery of 125I-NGF to the brain via the olfactory route. Drug Delivery4(2), 87-92. https://doi.org/10.3109/10717549709051878
  • Gajbhiye, K. R., Gajbhiye, V., &Soni, V. (2015). Targeted brain delivery of bioactive molecules using nanocarriers. Journal of Bioequivalence & Bioavailability7(3), 112. http://doi.org/10.4172/jbb.1000224
  • Ganeshpurkar, A., Ganeshpurkar, A., Agnihotri, A., Pandey, V., Vishwakarma, N., Bansal, D., & Dubey, N. (2013). Chondroitin Sulfate Surface Engineered Docetaxel-Loaded Liposomes for Tumor Targeting: Design, Development, and Characterization. In Proceedings of All India Seminar on Biomedical Engineering 2012 (AISOBE 2012) (pp. 77-82). Springer, India.
  • Gänger, S., &Schindowski, K. (2018). Tailoring formulations for intranasal nose-to-brain delivery: a review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa. Pharmaceutics10(3), 116. https://doi.org/10.3390/pharmaceutics10030116
  • Gao, H. M., Liu, B., Zhang, W., & Hong, J. S. (2003). Novel anti-inflammatory therapy for Parkinson’s disease. Trends in pharmacological sciences24(8), 395-401. https://doi.org/10.1016/S0165-6147(03)00176-7
  • Garg, T., Singh, S., & Goyal, A. (2013). Stimuli-sensitive hydrogels: an excellent carrier for drug and cell delivery. Critical Reviews™ in Therapeutic Drug Carrier Systems30(5). http://doi.org/10.1615/CritRevTherDrugCarrierSyst.2013007259
  • Gizurarson, S. (2015). The effect of cilia and the mucociliary clearance on successful drug delivery. Biological and Pharmaceutical Bulletin, b14-00398.  https://doi.org/10.1248/bpb.b14-00398
  • Hadaczek, P., Yamashita, Y., Mirek, H., Tamas, L., Bohn, M. C., Noble, C., ... &Bankiewicz, K. (2006). The “perivascular pump” driven by arterial pulsation is a powerful mechanism for the distribution of therapeutic molecules within the brain. Molecular Therapy14(1), 69-78. https://doi.org/10.1016/j.ymthe.2006.02.018
  • Hong, S. S., Oh, K. T., Choi, H. G., & Lim, S. J. (2019). Liposomal formulations for nose-to-brain delivery: recent advances and future perspectives. Pharmaceutics11(10), 540. https://doi.org/10.3390/pharmaceutics11100540
  • Hsu, D. W., & Suh, J. D. (2018). Anatomy and physiology of nasal obstruction. Otolaryngologic Clinics of North America51(5), 853-865. http://doi.org/10.16/j.otc.2018.05.001
  • Huang, W. J., Chen, W. W., & Zhang, X. (2017). Multiple sclerosis: Pathology, diagnosis and treatments. Experimental and therapeutic medicine13(6), 3163-3166. https://doi.org/10.3892/etm.2017.4410
  • Jankovic, J. (2008). Parkinson’s disease: clinical features and diagnosis. Journal of neurology, neurosurgery & psychiatry79(4), 368-376. http://dx.doi.org/10.1136/jnnp.2007.131045
  • Jeong, SH., Jang, JH. & Lee, YB. Drug delivery to the brain via the nasal route of administration: exploration of key targets and major consideration factors. J. Pharm. Investig. (2022). https://doi.org/10.1007/s40005-022-00589-5
  • Kushwaha, S. K., Keshari, R. K., & Rai, A. K. (2011). Advances in nasal trans-mucosal drug delivery. Journal of applied pharmaceutical science, 21-28.
  • Lai, S. K., O’Hanlon, D. E., Harrold, S., Man, S. T., Wang, Y. Y., Cone, R., & Hanes, J. (2007). Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proceedings of the National Academy of Sciences104(5), 1482-1487. https://doi.org/10.1073/pnas.0608611104
  • Liu, X. F., Fawcett, J. R., Thorne, R. G., DeFor, T. A., & Frey II, W. H. (2001). Intranasal administration of insulin-like growth factor-I bypasses the blood–brain barrier and protects against focal cerebral ischemic damage. Journal of the neurological sciences187(1-2), 91-97. https://doi.org/10.1016/S0022-510X(01)00532-9
  • Lochhead, J. J., Wolak, D. J., Pizzo, M. E., & Thorne, R. G. (2015). Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration. Journal of Cerebral Blood Flow & Metabolism35(3), 371-381. https://doi.org/10.1038/jcbfm.2014.215
  • Marx, D., Williams, G., &Birkhoff, M. (2015). Intranasal drug administration—an attractive delivery route for some drugs. Drug Discov Dev, 299-320. http://dx.doi.org/10.5772/59468
  • Migliore, M. M., Vyas, T. K., Campbell, R. B., Amiji, M. M., &Waszczak, B. L. (2010). Brain delivery of proteins by the intranasal route of administration: a comparison of cationic liposomes versus aqueous solution formulations. Journal of pharmaceutical sciences99(4), 1745-1761. https://doi.org/10.1002/jps.21939
  • Miyake, M. M., &Bleier, B. S. (2015). The blood-brain barrier and nasal drug delivery to the central nervous system. American journal of rhinology & allergy29(2), 124-127. https://doi.org/10.2500/ajra.2015.29.4149
  • Nasal cavity. (2022). Ken Hub [Internet]. Available from: https://www.kenhub.com/en/library/anatomy/nasal-cavity
  • Nigro, C. E. N., de Aguiar Nigro, J. F., Mion, O., & Mello Jr, J. F. (2009). Nasal valve: anatomy and physiology. Brazilian Journal of Otorhinolaryngology75(2), 305-310. https://doi.org/10.1016/S1808-8694(15)30795-3
  • Oliveira, P., Fortuna, A., Alves, G., & Falcao, A. (2016). Drug-metabolizing enzymes and efflux transporters in nasal epithelium: influence on the bioavailability of intranasally administered drugs. Current drug metabolism17(7), 628-647.
  • Pandey, V., Gadeval, A., Asati, S., Jain, P., Jain, N., Roy, R. K., &Tekade, R. K. (2020). Formulation strategies for nose-to-brain delivery of therapeutic molecules. In Drug Delivery Systems (pp. 291-332). Academic Press. https://doi.org/10.1016/B978-0-12-814487-9.00007-7
  • Pardeshi, C. V., &Belgamwar, V. S. (2013). Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood–brain barrier: an excellent platform for brain targeting. Expert opinion on drug delivery10(7), 957-972. https://doi.org/10.1517/17425247.2013.790887
  • Pathak, R., Dash, R. P., Misra, M., &Nivsarkar, M. (2014). Role of mucoadhesive polymers in enhancing delivery of nimodipine microemulsion to brain via intranasal route. Acta Pharmaceutica Sinica B4(2), 151-160. https://doi.org/10.1016/j.apsb.2014.02.002
  • Pires, A., Fortuna, A., Alves, G., &Falcão, A. (2009). Intranasal drug delivery: how, why and what for?. Journal of Pharmacy & Pharmaceutical Sciences12(3), 288-311. https://doi.org/10.18433/J3NC79
  • Rai, A., Jain, A., Jain, A., Jain, A., Pandey, V., Chashoo, G., ... & Sharma, P. R. (2015). Targeted SLNs for management of HIV-1 associated dementia. Drug Development and Industrial Pharmacy41(8), 1321-1327. https://doi.org/10.3109/03639045.2014.948453
  • Redzic, Z. (2011). Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences. Fluids and Barriers of the CNS8(1), 1-25. https://doi.org/10.1186/2045-8118-8-3
  • Rinaldi, F., Hanieh, P. N., Chan, L. K. N., Angeloni, L., Passeri, D., Rossi, M., ... & Marianecci, C. (2018). Chitosan glutamate-coated niosomes: a proposal for nose-to-brain delivery. Pharmaceutics10(2), 38. https://doi.org/10.3390/pharmaceutics10020038
  • Ross, T. M., Martinez, P. M., Renner, J. C., Thorne, R. G., Hanson, L. R., & Frey Ii, W. H. (2004). Intranasal administration of interferon beta bypasses the blood–brain barrier to target the central nervous system and cervical lymph nodes: a non-invasive treatment strategy for multiple sclerosis. Journal of neuroimmunology151(1-2), 66-77. https://doi.org/10.1016/j.jneuroim.2004.02.011
  • S Hersh, D., S Wadajkar, A., B Roberts, N., G Perez, J., P Connolly, N., Frenkel, V., ... & J Kim, A. (2016). Evolving drug delivery strategies to overcome the blood brain barrier. Current pharmaceutical design22(9), 1177-1193.
  • Sandhu, P., Rathore, D., Kataria, S., Middha, A., Brain targeting noval approaches: a comprehensive review [Internet]. Available from: https://www.pharmatutor.org/articles/brain-targeting-novel-approches-a-comprehensive-review
  • Savale, S., & Mahajan, H. (2017). Nose to brain: A versatile mode of drug delivery system. Asian J. Biomater. Res3, 16-38.
  • Schley, D., Carare-Nnadi, R., Please, C. P., Perry, V. H., & Weller, R. O. (2006). Mechanisms to explain the reverse perivascular transport of solutes out of the brain. Journal of theoretical biology238(4), 962-974. https://doi.org/10.1016/j.jtbi.2005.07.005
  • Sedlakova, R., Shivers, R. R., & Del Maestro, R. F. (1999). Ultrastructure of the blood-brain barrier in the rabbit. Journal of submicroscopic cytology and pathology31(1), 149-161. PMID: 10363362.
  • Seju, U., Kumar, A., & Sawant, K. K. (2011). Development and evaluation of olanzapine-loaded PLGA nanoparticles for nose-to-brain delivery: in vitro and in vivo studies. Acta biomaterialia7(12), 4169-4176. https://doi.org/10.1016/j.actbio.2011.07.025
  • Serralheiro, A., Alves, G., Fortuna, A., &Falcão, A. (2015). Direct nose-to-brain delivery of lamotrigine following intranasal administration to mice. International journal of pharmaceutics490(1-2), 39-46. https://doi.org/10.1016/j.ijpharm.2015.05.021
  • Shah, B., Khunt, D., Misra, M., &Padh, H. (2018). Formulation and in-vivo pharmacokinetic consideration of intranasal microemulsion and mucoadhesive microemulsion of rivastigmine for brain targeting. Pharmaceutical research35(1), 1-10. https://doi.org/10.1007/s11095-017-2279-z
  • Sigurdsson, P., Thorvaldsson, T., Gizurarson, S., & Gunnarsson, E. (1997). Olfactory absorption of insulin to the brain. Drug Delivery4(3), 195-200. https://doi.org/10.3109/10717549709051892
  • Singh, M., Thakur, V., Deshmukh, R., Sharma, A., Rathore, M. S., Kumar, A., & Mishra, N. (2018). Development and characterization of morin hydrate-loaded micellar nanocarriers for the effective management of Alzheimer’s disease. Journal of microencapsulation35(2), 137-148. https://doi.org/10.1080/02652048.2018.1441916
  • Skipor, J., Grzegorzewski, W., Einer-Jensen, N., &Wasowska, B. (2003). Local vascular pathway for progesterone transfer to the brain after nasal administration in gilts. Reprod Biol3(2), 143-59.
  • Soane, R. J., Hinchcliffe, M., Davis, S. S., & Illum, L. (2001). Clearance characteristics of chitosan-based formulations in the sheep nasal cavity. International journal of pharmaceutics217(1-2), 183-191. https://doi.org/10.1016/S0378-5173(01)00602-0
  • Sonaje, K., Lin, K. J., Tseng, M. T., Wey, S. P., Su, F. Y., Chuang, E. Y., ... & Sung, H. W. (2011). Effects of chitosan-nanoparticle-mediated tight junction opening on the oral absorption of endotoxins. Biomaterials32(33), 8712-8721. https://doi.org/10.1016/j.biomaterials.2011.07.086
  • Sosnik, A., &Seremeta, K. P. (2017). Polymeric hydrogels as technology platform for drug delivery applications. Gels3(3), 25. https://doi.org/10.3390/gels3030025
  • Stefanczyk-Krzymowska, S., Krzymowski, T., Grzegorzewski, W., Wasowska, B., &Skipor, J. (2000). Humoral pathway for local transfer of the priming pheromone androstenol from the nasal cavity to the brain and hypophysis in anaesthetized gilts. Experimental Physiology85(6), 801-809. https://doi.org/10.1111/j.1469-445X.2000.02056.x
  • Takahashi, H., & Wakabayashi, K. (2005). Controversy: is Parkinson's disease a single disease entity? Yes. Parkinsonism & Related Disorders11, S31-S37. https://doi.org/10.1016/j.parkreldis.2005.02.011
  • Tanaka, A., Furubayashi, T., Arai, M., Inoue, D., Kimura, S., Kiriyama, A., ... & Yamamoto, A. (2018). Delivery of oxytocin to the brain for the treatment of autism spectrum disorder by nasal application. Molecular pharmaceutics15(3), 1105-1111. https://doi.org/10.1021/acs.molpharmaceut.7b00991
  • Thakur, A., Singh, P. K., Biswal, S. S., Kumar, N., Jha, C. B., Singh, G., ... & Kumar, R. (2020). Drug delivery through nose: A non-invasive technique for brain targeting. Journal of Reports in Pharmaceutical Sciences9(1), 168. http://doi.org/10.4103/jrptps.JRPTPS_59_19
  • The nasal cavity. (2019). TeachMe Anatomy [Internet]. Available from: https://teachmeanatomy.info/head/organs/the-nose/nasal-cavity/
  • The nasal skeleton. (2019). TeachMe Anatomy [Internet]. Available from: https://teachmeanatomy.info/head/osteology/nasal-skeleton/
  • Thorne, R. G., Hanson, L. R., Ross, T. M., Tung, D., & Frey Ii, W. H. (2008). Delivery of interferon-β to the monkey nervous system following intranasal administration. Neuroscience152(3), 785-797. https://doi.org/10.1016/j.neuroscience.2008.01.013
  • Thorne, R. G., Pronk, G. J., Padmanabhan, V., & Frey Ii, W. H. (2004). Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience127(2), 481-496. https://doi.org/10.1016/j.neuroscience.2004.05.029
  • Tong, G. F., Qin, N., & Sun, L. W. (2017). Development and evaluation of Desvenlafaxine loaded PLGA-chitosan nanoparticles for brain delivery. Saudi pharmaceutical journal25(6), 844-851. https://doi.org/10.1016/j.jsps.2016.12.003
  • Türker, S., Onur, E., &Ózer, Y. (2004). Nasal route and drug delivery systems. Pharmacy world and Science26(3), 137-142. https://doi.org/10.1023/B:PHAR.0000026823.82950.ff
  • Upadhyay, S., Parikh, A., Joshi, P., Upadhyay, U. M., &Chotai, N. P. (2011). Intranasal drug delivery system-A glimpse to become maestro. Journal of applied pharmaceutical science, (Issue), 34-44.
  • Vyas, S. P., Goswami, S. K., & Singh, R. (1995). Liposomes based nasal delivery system of nifedipine: Development and characterization. International journal of pharmaceutics118(1), 23-30. https://doi.org/10.1016/0378-5173(94)00296-H
  • Vyas, T. K., Babbar, A. K., Sharma, R. K., Singh, S., &Misra, A. (2006). Intranasal mucoadhesive microemulsions of clonazepam: preliminary studies on brain targeting. Journal of pharmaceutical sciences95(3), 570-580. https://doi.org/10.1002/jps.20480
  • Wang, Z., Xiong, G., Tsang, W. C., Schätzlein, A. G., &Uchegbu, I. F. (2019). Nose-to-brain delivery. Journal of Pharmacology and Experimental Therapeutics370(3), 593-601. https://doi.org/10.1124/jpet.119.258152
  • Washington, N., Steele, R. J. C., Jackson, S. J., Bush, D., Mason, J., Gill, D. A., ... & Rawlins, D. A. (2000). Determination of baseline human nasal pH and the effect of intranasally administered buffers. International journal of pharmaceutics198(2), 139-146. https://doi.org/10.1016/S0378-5173(99)00442-1
  • Weller, J., &Budson, A. (2018). Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Research7.http://doi.org/10.12688/f1000research.14506.1
  • Yasir, M., & Sara, U. V. S. (2014). Solid lipid nanoparticles for nose to brain delivery of haloperidol: in vitro drug release and pharmacokinetics evaluation. Acta Pharmaceutica Sinica B4(6), 454-463. https://doi.org/10.1016/j.apsb.2014.10.005

  • Published Date : 2022-05-07