Harnessing the Power of Natural Products in Drug Discovery

Published: April 10, 2023

Authors

Kumar Anand, Sayak Khawas, Apurva Singh, Puja kumari, Neha Nupur and Neelima Sharma

Keywords
Natural Products, Lead compound, Optimization, High Throughput Screening, Folklore medicine, Combinatorial Chemistry

Abstract

Background: Natural products and their structural analogues have historically played a crucial role in pharmacotherapy, especially in the treatment of cancer and infectious diseases. However, various challenges including screening, isolation, characterization and effectiveness contributed to a decline in natural product research within the pharmaceutical industry.

Purpose: This review explores the enduring use of natural compounds in folk medicine with special focus on drug discovery inspired by multifaceted molecular roles of small molecules from natural sources. The article also aims to elucidate how modern modifications of these compounds can lead to the development of innovative molecules with enhanced pharmacological potential & can have good pharmaceutics profile.

Methods: To accomplish these objectives, literature has been surveyed from PUBMED, MEDLINE, EMBASE etc. like search engines, for pinpointing detailed technological developments that empower natural product-based drug discovery. Various case studies are incorporated in terms of folklore usage, in process drug discoveries and small molecules scientifically founded with signalling pathway bio stimulation.

Conclusions: The journey of natural products from nature to clinic is very complex and time taking. In this pipeline, if attention can be drawn to some major aspects, it will lead to a paradigm shift in drug discovery processes. This can be witnessed by folklore usage of natural products and up laddering multifaceted concepts of small and lead molecule

References

Aghababaei, F., & Hadidi, M. (2023). Recent Advances in Potential Health Benefits of Quercetin. Pharmaceuticals (Basel, Switzerland), 16(7), 1020. https://doi.org/10.3390/ph16071020

Albarano, L., Esposito, R., Ruocco, N., & Costantini, M. (2020). Genome Mining as New Challenge in Natural Products Discovery. Marine drugs, 18(4), 199. https://doi.org/10.3390/md18040199

Aminov R. I. (2010). A brief history of the antibiotic era: lessons learned and challenges for the future. Frontiers in microbiology, 1, 134. https://doi.org/10.3389/fmicb.2010.00134

Anand David, A. V., Arulmoli, R., & Parasuraman, S. (2016). Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid. Pharmacognosy reviews, 10(20), 84–89. https://doi.org/10.4103/0973-7847.194044

Aswathy, M., Vijayan, A., Daimary, U. D., Girisa, S., Radhakrishnan, K. V., & Kunnumakkara, A. B. (2022). Betulinic acid: A natural promising anticancer drug, current situation, and future perspectives. Journal of biochemical and molecular toxicology, 36(12), e23206. https://doi.org/10.1002/jbt.23206

Atanasov, A. G., Waltenberger, B., Pferschy-Wenzig, E. M., Linder, T., Wawrosch, C., Uhrin, P., Temml, V., Wang, L., Schwaiger, S., Heiss, E. H., Rollinger, J. M., Schuster, D., Breuss, J. M., Bochkov, V., Mihovilovic, M. D., Kopp, B., Bauer, R., Dirsch, V. M., & Stuppner, H. (2015). Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology advances, 33(8), 1582–1614.
https://doi.org/10.1016/j.biotechadv.2015.08.001
Baltz R. H. (2019). Natural product drug discovery in the genomic era: realities, conjectures, misconceptions, and opportunities. Journal of industrial microbiology & biotechnology, 46(3-4), 281–299. https://doi.org/10.1007/s10295-018-2115-4

Bauer, A., & Brönstrup, M. (2014). Industrial natural product chemistry for drug discovery and development. Natural product reports, 31(1), 35–60. https://doi.org/10.1039/c3np70058e

Bentley R. (2009). Different roads to discovery; Prontosil (hence sulfa drugs) and penicillin (hence beta-lactams). Journal of industrial microbiology & biotechnology, 36(6), 775–786. https://doi.org/10.1007/s10295-009-0553-8

Bhullar, K. S., & Hubbard, B. P. (2015). Lifespan and healthspan extension by resveratrol. Biochimica et biophysica acta, 1852(6), 1209–1218. https://doi.org/10.1016/j.bbadis.2015.01.012

Boucher, J., Kleinridders, A., & Kahn, C. R. (2014). Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harbor perspectives in biology, 6(1), a009191. https://doi.org/10.1101/cshperspect.a009191

Cao, X., Wang, Y., Zhang, W., Zhong, X., Gunes, E. G., Dang, J., Wang, J., Epstein, A. L., Querfeld, C., Sun, Z., Rosen, S. T., & Feng, M. (2022). Targeting macrophages for enhancing CD47 blockade-elicited lymphoma clearance and overcoming tumor-induced immunosuppression. Blood, 139(22), 3290–3302. https://doi.org/10.1182/blood.2021013901

Cappelletti, S., Piacentino, D., Sani, G., & Aromatario, M. (2015). Caffeine: cognitive and physical performance enhancer or psychoactive drug?. Current neuropharmacology, 13(1), 71–88. https://doi.org/10.2174/1570159X13666141210215655

Carvalho, M. R., Truckenmuller, R., Reis, R. L., & Oliveira, J. M. (2020). Biomaterials and Microfluidics for Drug Discovery and Development. Advances in experimental medicine and biology, 1230, 121–135. https://doi.org/10.1007/978-3-030-36588-2_8

Chamorro-Cevallos, G., Mojica-Villegas, M. A., García-Martínez, Y., Pérez-Gutiérrez, S., Madrigal-Santillán, E., Vargas-Mendoza, N., Morales-González, J. A., & Cristóbal-Luna, J. M. (2022). A Complete Review of Mexican Plants with Teratogenic Effects. Plants (Basel, Switzerland), 11(13), 1675. https://doi.org/10.3390/plants11131675

Chen, Y., & Kirchmair, J. (2020). Cheminformatics in Natural Product-based Drug Discovery. Molecular informatics, 39(12), e2000171. https://doi.org/10.1002/minf.202000171

Cichewicz, R. H., & Kouzi, S. A. (2004). Chemistry, biological activity, and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV infection. Medicinal research reviews, 24(1), 90–114. https://doi.org/10.1002/med.10053

Clapp, N., Amour, A., Rowan, W. C., & Candarlioglu, P. L. (2021). Organ-on-chip applications in drug discovery: an end user perspective. Biochemical Society transactions, 49(4), 1881–1890. https://doi.org/10.1042/BST20210840

Cragg G. M. (1998). Paclitaxel (Taxol): a success story with valuable lessons for natural product drug discovery and development. Medicinal research reviews, 18(5), 315–331. https://doi.org/10.1002/(sici)1098-1128(199809)18:5<315::aid-med3>3.0.co;2-w

Cragg, G. M., & Newman, D. J. (2013). Natural products: a continuing source of novel drug leads. Biochimica et biophysica acta, 1830(6), 3670–3695. https://doi.org/10.1016/j.bbagen.2013.02.008

Desborough, M. J. R., & Keeling, D. M. (2017). The aspirin story – from willow to wonder drug. British journal of haematology, 177(5), 674–683. https://doi.org/10.1111/bjh.14520

Dias, D. A., Urban, S., & Roessner, U. (2012). A historical overview of natural products in drug discovery. Metabolites, 2(2), 303–336. https://doi.org/10.3390/metabo2020303

Dong, H., & Ming, D. (2023). A Comprehensive Self-Resistance Gene Database for Natural-Product Discovery with an Application to Marine Bacterial Genome Mining. International journal of molecular sciences, 24(15), 12446. https://doi.org/10.3390/ijms241512446

Dzobo K. (2022). The Role of Natural Products as Sources of Therapeutic Agents for Innovative Drug Discovery. Comprehensive Pharmacology, 408–422. https://doi.org/10.1016/B978-0-12-820472-6.00041-4

Ebob, O. T., Babiaka, S. B., & Ntie-Kang, F. (2021). Natural Products as Potential Lead Compounds for Drug Discovery Against SARS-CoV-2. Natural products and bioprospecting, 11(6), 611–628. https://doi.org/10.1007/s13659-021-00317-w

El-Saber Batiha, G., Magdy Beshbishy, A., G Wasef, L., Elewa, Y. H. A., A Al-Sagan, A., Abd El-Hack, M. E., Taha, A. E., M Abd-Elhakim, Y., & Prasad Devkota, H. (2020). Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.): A Review. Nutrients, 12(3), 872. https://doi.org/10.3390/nu12030872

Erenler, R., Meral, B., Sen, O., Elmastas, M., Aydin, A., Eminagaoglu, O., & Topcu, G. (2017). Bioassay-guided isolation, identification of compounds from Origanum rotundifolium and investigation of their antiproliferative and antioxidant activities. Pharmaceutical biology, 55(1), 1646–1653. https://doi.org/10.1080/13880209.2017.1310906

Fattori, D., Squarcia, A., & Bartoli, S. (2008). Fragment-based approach to drug lead discovery: overview and advances in various techniques. Drugs in R&D, 9(4), 217–227. https://doi.org/10.2165/00126839-200809040-00002

Foa, R., Norton, L., & Seidman, A. D. (1994). Taxol (paclitaxel): a novel anti-microtubule agent with remarkable anti-neoplastic activity. International journal of clinical & laboratory research, 24(1), 6–14. https://doi.org/10.1007/BF02592403

Fu, Y., Luo, J., Qin, J., & Yang, M. (2019). Screening techniques for the identification of bioactive compounds in natural products. Journal of pharmaceutical and biomedical analysis, 168, 189–200. https://doi.org/10.1016/j.jpba.2019.02.027

Gajula, S. N. R., Nadimpalli, N., & Sonti, R. (2021). Drug metabolic stability in early drug discovery to develop potential lead compounds. Drug metabolism reviews, 53(3), 459–477. https://doi.org/10.1080/03602532.2021.1970178

Gallego-Jara, J., Lozano-Terol, G., Sola-Martínez, R. A., Cánovas-Díaz, M., & de Diego Puente, T. (2020). A Compressive Review about Taxol®: History and Future Challenges. Molecules (Basel, Switzerland), 25(24), 5986. https://doi.org/10.3390/molecules25245986

Gazák, R., Walterová, D., & Kren, V. (2007). Silybin and silymarin–new and emerging applications in medicine. Current medicinal chemistry, 14(3), 315–338. https://doi.org/10.2174/092986707779941159

Geng, F. H., Li, G. H., Zhang, X., Zhang, P., Dong, M. Q., Zhao, Z. J., Zhang, Y., Dong, L., & Gao, F. (2016). Berberine improves mesenteric artery insulin sensitivity through up-regulating insulin receptor-mediated signalling in diabetic rats. British journal of pharmacology, 173(10), 1569–1579. https://doi.org/10.1111/bph.13466

Grabowski, K., Baringhaus, K. H., & Schneider, G. (2008). Scaffold diversity of natural products: inspiration for combinatorial library design. Natural product reports, 25(5), 892–904. https://doi.org/10.1039/b715668p

Graham-Brown, R. A. C., & Healsmith, M. F. (2018). From folklore to pharmacy: Putting plants into practice. Clinics in dermatology, 36(3), 282–288. https://doi.org/10.1016/j.clindermatol.2018.03.002

Guido, R. V., Oliva, G., & Andricopulo, A. D. (2011). Modern drug discovery technologies: opportunities and challenges in lead discovery. Combinatorial chemistry & high throughput screening, 14(10), 830–839. https://doi.org/10.2174/138620711797537067

Guo Z. (2016). Artemisinin anti-malarial drugs in China. Acta pharmaceutica Sinica. B, 6(2), 115–124. https://doi.org/10.1016/j.apsb.2016.01.008

Hannan, M. A., Rahman, M. A., Sohag, A. A. M., Uddin, M. J., Dash, R., Sikder, M. H., Rahman, M. S., Timalsina, B., Munni, Y. A., Sarker, P. P., Alam, M., Mohibbullah, M., Haque, M. N., Jahan, I., Hossain, M. T., Afrin, T., Rahman, M. M., Tahjib-Ul-Arif, M., Mitra, S., Oktaviani, D. F., … Kim, B. (2021). Black Cumin (Nigella sativa L.): A Comprehensive Review on Phytochemistry, Health Benefits, Molecular Pharmacology, and Safety. Nutrients, 13(6), 1784. https://doi.org/10.3390/nu13061784

Hefti F. F. (2008). Requirements for a lead compound to become a clinical candidate. BMC neuroscience, 9 Suppl 3(Suppl 3), S7. https://doi.org/10.1186/1471-2202-9-S3-S7

Hon, K. L., & Lee, V. W. (2017). Challenges for drug discovery and development in China. Expert opinion on drug discovery, 12(1), 105–113. https://doi.org/10.1080/17460441.2017.1257115

Honório, K. M., Moda, T. L., & Andricopulo, A. D. (2013). Pharmacokinetic properties and in silico ADME modeling in drug discovery. Medicinal chemistry (Shariqah (United Arab Emirates)), 9(2), 163–176. https://doi.org/10.2174/1573406411309020002

Hornburg, C. C., Britt, J. R., Evans, J. R., Akee, R. K., Whitt, J. A., Trinh, S. K., Harris, M. J., Thompson, J. R., Ewing, T. L., Shipley, S. M., Grothaus, P. G., Newman, D. J., Schneider, J. P., Grkovic, T., & O’Keefe, B. R. (2018). NCI Program for Natural Product Discovery: A Publicly-Accessible Library of Natural Product Fractions for High-Throughput Screening. ACS chemical biology, 13(9), 2484–2497. https://doi.org/10.1021/acschembio.8b00389

Hu, Y., Guo, N., Yang, T., Yan, J., Wang, W., & Li, X. (2022). The Potential Mechanisms by which Artemisinin and Its Derivatives Induce Ferroptosis in the Treatment of Cancer. Oxidative medicine and cellular longevity, 2022, 1458143. https://doi.org/10.1155/2022/1458143

Iao, Z., Morris-Natschke, S. L., & Lee, K. H. (2016). Strategies for the Optimization of Natural Leads to Anticancer Drugs or Drug Candidates. Medicinal research reviews, 36(1), 32–91. https://doi.org/10.1002/med.21377

Kane, R. C., Farrell, A. T., Saber, H., Tang, S., Williams, G., Jee, J. M., Liang, C., Booth, B., Chidambaram, N., Morse, D., Sridhara, R., Garvey, P., Justice, R., & Pazdur, R. (2006). Sorafenib for the treatment of advanced renal cell carcinoma. Clinical cancer research : an official journal of the American Association for Cancer Research, 12(24), 7271–7278. https://doi.org/10.1158/1078-0432.CCR-06-1249

Katz, L., & Baltz, R. H. (2016). Natural product discovery: past, present, and future. Journal of industrial microbiology & biotechnology, 43(2-3), 155–176. https://doi.org/10.1007/s10295-015-1723-5

Khalaf R. A. (2016). Exploring Natural Products as a Source for Antidiabetic Lead Compounds and Possible Lead Optimization. Current topics in medicinal chemistry, 16(23), 2549–2561. https://doi.org/10.2174/1568026616666160414123602

Khan, U. M., Sevindik, M., Zarrabi, A., Nami, M., Ozdemir, B., Kaplan, D. N., Selamoglu, Z., Hasan, M., Kumar, M., Alshehri, M. M., & Sharifi-Rad, J. (2021). Lycopene: Food Sources, Biological Activities, and Human Health Benefits. Oxidative medicine and cellular longevity, 2021, 2713511. https://doi.org/10.1155/2021/2713511

Kidd, S. L., Osberger, T. J., Mateu, N., Sore, H. F., & Spring, D. R. (2018). Recent Applications of Diversity-Oriented Synthesis Toward Novel, 3-Dimensional Fragment Collections. Frontiers in chemistry, 6, 460. https://doi.org/10.3389/fchem.2018.00460

Kim, J. H., Lee, N., Hwang, S., Kim, W., Lee, Y., Cho, S., Palsson, B. O., & Cho, B. K. (2021). Discovery of novel secondary metabolites encoded in actinomycete genomes through coculture. Journal of industrial microbiology & biotechnology, 48(3-4), kuaa001. https://doi.org/10.1093/jimb/kuaa001
Klebe G. (2006). Virtual ligand screening: strategies, perspectives and limitations. Drug discovery today, 11(13-14), 580–594.
https://doi.org/10.1016/j.drudis.2006.05.012

Koeberle, A., & Werz, O. (2014). Multi-target approach for natural products in inflammation. Drug discovery today, 19(12), 1871–1882. https://doi.org/10.1016/j.drudis.2014.08.006

Kohler, D. R., & Goldspiel, B. R. (1994). Paclitaxel (taxol). Pharmacotherapy, 14(1), 3–34. https://doi.org/10.1002/j.1875-9114.1994.tb02785.x
Kong, L. Y., & Tan, R. X. (2015). Artemisinin, a miracle of traditional Chinese medicine. Natural product reports, 32(12), 1617–1621. https://doi.org/10.1039/c5np00133a

Lam, R., Gondin, A. B., Canals, M., Kellam, B., Briddon, S. J., Graham, B., & Scammells, P. J. (2018). Fluorescently Labeled Morphine Derivatives for Bioimaging Studies. Journal of medicinal chemistry, 61(3), 1316–1329. https://doi.org/10.1021/acs.jmedchem.7b01811

Laux, A., Muller, A. H., Miehe, M., Dirrig-Grosch, S., Deloulme, J. C., Delalande, F., Stuber, D., Sage, D., Van Dorsselaer, A., Poisbeau, P., Aunis, D., & Goumon, Y. (2011). Mapping of endogenous morphine-like compounds in the adult mouse brain: Evidence of their localization in astrocytes and GABAergic cells. The Journal of comparative neurology, 519(12), 2390–2416. https://doi.org/10.1002/cne.22633

Li, J., Casteels, T., Frogne, T., Ingvorsen, C., Honoré, C., Courtney, M., Huber, K. V. M., Schmitner, N., Kimmel, R. A., Romanov, R. A., Sturtzel, C., Lardeau, C. H., Klughammer, J., Farlik, M., Sdelci, S., Vieira, A., Avolio, F., Briand, F., Baburin, I., Májek, P., … Kubicek, S. (2017). Artemisinins Target GABAA Receptor Signaling and Impair α Cell Identity. Cell, 168(1-2), 86–100.e15. https://doi.org/10.1016/j.cell.2016.11.010

Li, Q., & Kang, C. (2020). Mechanisms of Action for Small Molecules Revealed by Structural Biology in Drug Discovery. International journal of molecular sciences, 21(15), 5262. https://doi.org/10.3390/ijms21155262

Ligon B. L. (2004). Penicillin: its discovery and early development. Seminars in pediatric infectious diseases, 15(1), 52–57 https://doi.org/10.1053/j.spid.2004.02.001

Lima, L. M., Silva, B. N. M. D., Barbosa, G., & Barreiro, E. J. (2020). β-lactam antibiotics: An overview from a medicinal chemistry perspective. European journal of medicinal chemistry, 208, 112829. https://doi.org/10.1016/j.ejmech.2020.112829

Lin, C. R., Tsai, S. H. L., Wang, C., Lee, C. L., Hung, S. W., Ting, Y. T., & Hung, Y. C. (2023). Willow Bark (Salix spp.) Used for Pain Relief in Arthritis: A Meta-Analysis of Randomized Controlled Trials. Life (Basel, Switzerland), 13(10), 2058. https://doi.org/10.3390/life13102058

Lin, Z., Zhang, Y., Zhang, Y., Shen, H., Hu, L., Jiang, H., & Shen, X. (2008). Oleanolic acid derivative NPLC441 potently stimulates glucose transport in 3T3-L1 adipocytes via a multi-target mechanism. Biochemical pharmacology, 76(10), 1251–1262. https://doi.org/10.1016/j.bcp.2008.08.016

Liu, R., Dong, H. F., & Jiang, M. S. (2012). Artemisinin: the gifts from traditional Chinese medicine not only for malaria control but also for schistosomiasis control. Parasitology research, 110(5), 2071–2074. https://doi.org/10.1007/s00436-011-2707-7

Liu, R., Li, X., & Lam, K. S. (2017). Combinatorial chemistry in drug discovery. Current opinion in chemical biology, 38, 117–126. https://doi.org/10.1016/j.cbpa.2017.03.017

Liu, Y., Wang, Z. Y., Xu, W. J., Zhang, C. J., & Dong, L. (2019). Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica, 44(17), 3637–3644. https://doi.org/10.19540/j.cnki.cjcmm.20190629.310

Ludy, M. J., Moore, G. E., & Mattes, R. D. (2012). The effects of capsaicin and capsiate on energy balance: critical review and meta-analyses of studies in humans. Chemical senses, 37(2), 103–121. https://doi.org/10.1093/chemse/bjr100

Luo, Y., Cobb, R. E., & Zhao, H. (2014). Recent advances in natural product discovery. Current opinion in biotechnology, 30, 230–237. https://doi.org/10.1016/j.copbio.2014.09.002

Ma, S., Wang, X., Lai, F., & Lou, C. (2020). The beneficial pharmacological effects and potential mechanisms of picroside II: Evidence of its benefits from in vitro and in vivo. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 130, 110421. https://doi.org/10.1016/j.biopha.2020.110421
Malve H. (2016). Exploring the ocean for new drug developments: Marine pharmacology. Journal of pharmacy & bioallied sciences, 8(2), 83–91. https://doi.org/10.4103/0975-7406.171700

McLellan, T. M., Caldwell, J. A., & Lieberman, H. R. (2016). A review of caffeine’s effects on cognitive, physical and occupational performance. Neuroscience and biobehavioral reviews, 71, 294–312. https://doi.org/10.1016/j.neubiorev.2016.09.001

Meissner, F., Geddes-McAlister, J., Mann, M., & Bantscheff, M. (2022). The emerging role of mass spectrometry-based proteomics in drug discovery. Nature reviews. Drug discovery, 21(9), 637–654. https://doi.org/10.1038/s41573-022-00409-3

Mishra, B. B., & Tiwari, V. K. (2011). Natural products: an evolving role in future drug discovery. European journal of medicinal chemistry, 46(10), 4769–4807. https://doi.org/10.1016/j.ejmech.2011.07.057

Molinski T. F. (2014). All natural: the renaissance of natural products chemistry. Organic letters, 16(15), 3849–3855. https://doi.org/10.1021/ol501917g
Mukherjee, R., Kumar, V., Srivastava, S. K., Agarwal, S. K., & Burman, A. C. (2006). Betulinic acid derivatives as anticancer agents: structure activity relationship. Anti-cancer agents in medicinal chemistry, 6(3), 271–279. https://doi.org/10.2174/187152006776930846

Musial, C., Kuban-Jankowska, A., & Gorska-Ponikowska, M. (2020). Beneficial Properties of Green Tea Catechins. International journal of molecular sciences, 21(5), 1744. https://doi.org/10.3390/ijms21051744

Najmi, A., Javed, S. A., Al Bratty, M., & Alhazmi, H. A. (2022). Modern Approaches in the Discovery and Development of Plant-Based Natural Products and Their Analogues as Potential Therapeutic Agents. Molecules (Basel, Switzerland), 27(2), 349. https://doi.org/10.3390/molecules27020349

Nehlig, A., Daval, J. L., & Debry, G. (1992). Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain research. Brain research reviews, 17(2), 139–170. https://doi.org/10.1016/0165-0173(92)90012-b

Newman, D. J., & Cragg, G. M. (2020). Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. Journal of natural products, 83(3), 770–803. https://doi.org/10.1021/acs.jnatprod.9b01285

Oboh, M., Govender, L., Siwela, M., & Mkhwanazi, B. N. (2021). Anti-Diabetic Potential of Plant-Based Pentacyclic Triterpene Derivatives: Progress Made to Improve Efficacy and Bioavailability. Molecules (Basel, Switzerland), 26(23), 7243. https://doi.org/10.3390/molecules26237243

Ortholand, J. Y., & Ganesan, A. (2004). Natural products and combinatorial chemistry: back to the future. Current opinion in chemical biology, 8(3), 271–280. https://doi.org/10.1016/j.cbpa.2004.04.011

Patocka, J., Nepovimova, E., Wu, W., & Kuca, K. (2020). Digoxin: Pharmacology and toxicology-A review. Environmental toxicology and pharmacology, 79, 103400. https://doi.org/10.1016/j.etap.2020.103400

Patridge, E., Gareiss, P., Kinch, M. S., & Hoyer, D. (2016). An analysis of FDA-approved drugs: natural products and their derivatives. Drug discovery today, 21(2), 204–207. https://doi.org/10.1016/j.drudis.2015.01.009

Pirintsos, S., Panagiotopoulos, A., Bariotakis, M., Daskalakis, V., Lionis, C., Sourvinos, G., Karakasiliotis, I., Kampa, M., & Castanas, E. (2022). From Traditional Ethnopharmacology to Modern Natural Drug Discovery: A Methodology Discussion and Specific Examples. Molecules (Basel, Switzerland), 27(13), 4060. https://doi.org/10.3390/molecules27134060

Pleszczyńska, M., Wiater, A., Siwulski, M., Lemieszek, M. K., Kunaszewska, J., Kaczor, J., Rzeski, W., Janusz, G., & Szczodrak, J. (2016). Cultivation and utility of Piptoporus betulinus fruiting bodies as a source of anticancer agents. World journal of microbiology & biotechnology, 32(9), 151. https://doi.org/10.1007/s11274-016-2114-4

Prescott, T. A. K., Hill, R., Mas-Claret, E., Gaya, E., & Burns, E. (2023). Fungal Drug Discovery for Chronic Disease: History, New Discoveries and New Approaches. Biomolecules, 13(6), 986. https://doi.org/10.3390/biom13060986

Rakheja, I., Ansari, A. H., Ray, A., Chandra Joshi, D., & Maiti, S. (2022). Small molecule quercetin binds MALAT1 triplex and modulates its cellular function. Molecular therapy. Nucleic acids, 30, 241–256. https://doi.org/10.1016/j.omtn.2022.09.016

Ramos-Hryb, A. B., Pazini, F. L., Kaster, M. P., & Rodrigues, A. L. S. (2017). Therapeutic Potential of Ursolic Acid to Manage Neurodegenerative and Psychiatric Diseases. CNS drugs, 31(12), 1029–1041. https://doi.org/10.1007/s40263-017-0474-4

Ren, M., Jiang, S., Wang, Y., Pan, X., Pan, F., & Wei, X. (2023). Discovery and excavation of lichen bioactive natural products. Frontiers in microbiology, 14, 1177123. https://doi.org/10.3389/fmicb.2023.1177123

Saneja, A., Arora, D., Kumar, R., Dubey, R. D., Panda, A. K., & Gupta, P. N. (2018). Therapeutic applications of betulinic acid nanoformulations. Annals of the New York Academy of Sciences, 1421(1), 5–18. https://doi.org/10.1111/nyas.13570

Sarkar, C., Quispe, C., Jamaddar, S., Hossain, R., Ray, P., Mondal, M., Abdulwanis Mohamed, Z., Sani Jaafaru, M., Salehi, B., Islam, M. T., Faizal Abdull Razis, A., Martorell, M., Pastene-Navarrete, E., & Sharifi-Rad, J. (2020). Therapeutic promises of ginkgolide A: A literature-based review. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 132, 110908. https://doi.org/10.1016/j.biopha.2020.110908

Seib, K. L., Dougan, G., & Rappuoli, R. (2009). The key role of genomics in modern vaccine and drug design for emerging infectious diseases. PLoS genetics, 5(10), e1000612. https://doi.org/10.1371/journal.pgen.1000612

Shah, K. K., Kogut, S., & Slitt, A. (2021). Challenges in Evaluating Safety and Efficacy in Drug Development for Rare Diseases: A Review for Pharmacists. Journal of pharmacy practice, 34(3), 472–479. https://doi.org/10.1177/0897190020930972

Sukmarini L. (2021). Recent Advances in Discovery of Lead Structures from Microbial Natural Products: Genomics- and Metabolomics-Guided Acceleration. Molecules (Basel, Switzerland), 26(9), 2542. https://doi.org/10.3390/molecules26092542

Sun, D., Gao, W., Hu, H., & Zhou, S. (2022). Why 90% of clinical drug development fails and how to improve it?. Acta pharmaceutica Sinica. B, 12(7), 3049–3062. https://doi.org/10.1016/j.apsb.2022.02.002

Szymański, P., Markowicz, M., & Mikiciuk-Olasik, E. (2012). Adaptation of high-throughput screening in drug discovery-toxicological screening tests. International journal of molecular sciences, 13(1), 427–452. https://doi.org/10.3390/ijms13010427

Taylor, D. M., & Werneke, U. (2018). Ethnopharmacology†. Nordic journal of psychiatry, 72(sup1), S30–S32. https://doi.org/10.1080/08039488.2018.1525636
Teixeira S. (2002). Bioflavonoids: proanthocyanidins and quercetin and their potential roles in treating musculoskeletal conditions. The Journal of orthopaedic and sports physical therapy, 32(7), 357–363. https://doi.org/10.2519/jospt.2002.32.7.357

Tuli, H. S., Mistry, H., Kaur, G., Aggarwal, D., Garg, V. K., Mittal, S., Yerer, M. B., Sak, K., & Khan, M. A. (2022). Gallic Acid: A Dietary Polyphenol that Exhibits Anti-neoplastic Activities by Modulating Multiple Oncogenic Targets. Anti-cancer agents in medicinal chemistry, 22(3), 499–514. https://doi.org/10.2174/1871520621666211119085834

van Breemen, R. B., Muchiri, R. N., Bates, T. A., Weinstein, J. B., Leier, H. C., Farley, S., & Tafesse, F. G. (2022). Cannabinoids Block Cellular Entry of SARS-CoV-2 and the Emerging Variants. Journal of natural products, 85(1), 176–184. https://doi.org/10.1021/acs.jnatprod.1c00946\

Van der Walt, E. M., Milczek, E. M., Malan, S. F., Edmondson, D. E., Castagnoli, N., Jr, Bergh, J. J., & Petzer, J. P. (2009). Inhibition of monoamine oxidase by (E)-styrylisatin analogues. Bioorganic & medicinal chemistry letters, 19(9), 2509–2513. https://doi.org/10.1016/j.bmcl.2009.03.030
Wang, K., Feng, X., Chai, L., Cao, S., & Qiu, F. (2017). The metabolism of berberine and its contribution to the pharmacological effects. Drug metabolism reviews, 49(2), 139–157. https://doi.org/10.1080/03602532.2017.1306544

Wiley, D. S., Redfield, S. E., & Zon, L. I. (2017). Chemical screening in zebrafish for novel biological and therapeutic discovery. Methods in cell biology, 138, 651–679. https://doi.org/10.1016/bs.mcb.2016.10.004

Wishart D. S. (2016). Emerging applications of metabolomics in drug discovery and precision medicine. Nature reviews. Drug discovery, 15(7), 473–484. https://doi.org/10.1038/nrd.2016.32

Xu, Y., Liu, J., Wu, Y., Guo, Q., Sun, H., & Chen, G. (2015). Natural products against hematological malignancies and identification of their targets. Science China. Life sciences, 58(12), 1191–1201. https://doi.org/10.1007/s11427-015-4922-4

Yang, C. H., & Horwitz, S. B. (2017). Taxol®: The First Microtubule Stabilizing Agent. International journal of molecular sciences, 18(8), 1733. https://doi.org/10.3390/ijms18081733

Yuan, H., Ma, Q., Ye, L., & Piao, G. (2016). The Traditional Medicine and Modern Medicine from Natural Products. Molecules (Basel, Switzerland), 21(5), 559. https://doi.org/10.3390/molecules21050559

Zhang, M. M., Qiao, Y., Ang, E. L., & Zhao, H. (2017). Using natural products for drug discovery: the impact of the genomics era. Expert opinion on drug discovery, 12(5), 475–487. https://doi.org/10.1080/17460441.2017.1303478

Zhang, M., Sala, C., Hartkoorn, R. C., Dhar, N., Mendoza-Losana, A., & Cole, S. T. (2012). Streptomycin-starved Mycobacterium tuberculosis 18b, a drug discovery tool for latent tuberculosis. Antimicrobial agents and chemotherapy, 56(11), 5782–5789. https://doi.org/10.1128/AAC.01125-12

Zhang, W., Hong, D., Zhou, Y., Zhang, Y., Shen, Q., Li, J. Y., Hu, L. H., & Li, J. (2006). Ursolic acid and its derivative inhibit protein tyrosine phosphatase 1B, enhancing insulin receptor phosphorylation and stimulating glucose uptake. Biochimica et biophysica acta, 1760(10), 1505–1512.
https://doi.org/10.1016/j.bbagen.2006.05.009

Zhang, Z., & Tang, W. (2018). Drug metabolism in drug discovery and development. Acta pharmaceutica Sinica. B, 8(5), 721–732. https://doi.org/10.1016/j.apsb.2018.04.003

Zhao, H., & Akritopoulou-Zanze, I. (2010). When analoging is not enough: scaffold discovery in medicinal chemistry. Expert opinion on drug discovery, 5(2), 123–134. https://doi.org/10.1517/17460440903584874

How to Cite

Kumar Anand, Sayak Khawas, Apurva Singh, Puja kumari, Neha Nupur and Neelima Sharma . Harnessing the Power of Natural Products in Drug Discovery. J. Pharm. Technol. Res. Manag.. 2023, 11, 1–18
Harnessing the Power of Natural Products in Drug Discovery

Current Issue

PeriodicityBiannually
Issue-1May
Issue-2November
ISSN Print2321-2217
ISSN Online2321-2225
RNI No.CHAENG/2013/50088
OA Policy

Publisher's policy of the journal at Sherpa UK for the submitted, accepted, and published articles. Click OAPolicy

Plan-S Compliance

To check compliance, one has to use the Journal Check Tool (JCT). This tool provided by cOAlition S (European funders) for the researchers (fundee) to check the compliance with the journal.

Recommend journal to your library

You can recommend the journal being a researcher or faculty member to your library. We will post a copy of the Journal to your library on your behalf at free of cost.
Click here: Recommend Journal

Preprint Arxiv Submission

The authors are encouraged to submit the author’s copy (preprint) to appropriate preprint archives e.g. https://arxiv.org and/or on https://indiarxiv.org or institutional repositories (e.g., D Space) before paper acceptance by the editor of Journal. After publications of the paper author(s) should mention the citation information, title and abstract along with DOI number of the publication carefully on the required page of the depository(ies).

Contact: Phone: +91-172-2741000, +91-172-4691800

Email : editor.jptrm@chitkara.edu.in;

Abstract and Indexing

Information

This work is licensed under a Creative Commons Attribution 4.0 International License.

Articles in Journal of Pharmaceutical Technology, Research and Management (J. Pharm. Tech. Res. Management) by Chitkara University Publications are Open Access articles that are published with licensed under a Creative Commons Attribution- CC-BY 4.0 International License. Based on a work at https://jptrm.chitkara.edu.in/. This license permits one to use, remix, tweak and reproduction in any medium, even commercially provided one give credit for the original creation.

View Legal Code of the above-mentioned license, https://creativecommons.org/licenses/by/4.0/legalcode

View Licence Deed here https://creativecommons.org/licenses/by/4.0/

Creative Commons License

Journal of Pharmaceutical Technology, Research and Management by Chitkara University Publications is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at https://jptrm.chitkara.edu.in//

Members