Harnessing the Power of Natural Products in Drug Discovery

Abstract

Background: Natural products and their structural analogues have historically played a crucial role in pharmacotherapy, especially in the treatment of cancer and infectious diseases. However, various challenges including screening, isolation, characterization and effectiveness contributed to a decline in natural product research within the pharmaceutical industry.

Purpose: This review explores the enduring use of natural compounds in folk medicine with special focus on drug discovery inspired by multifaceted molecular roles of small molecules from natural sources. The article also aims to elucidate how modern modifications of these compounds can lead to the development of innovative molecules with enhanced pharmacological potential & can have good pharmaceutics profile.

Methods: To accomplish these objectives, literature has been surveyed from PUBMED, MEDLINE, EMBASE etc. like search engines, for pinpointing detailed technological developments that empower natural product-based drug discovery. Various case studies are incorporated in terms of folklore usage, in process drug discoveries and small molecules scientifically founded with signalling pathway bio stimulation.

Conclusions: The journey of natural products from nature to clinic is very complex and time taking. In this pipeline, if attention can be drawn to some major aspects, it will lead to a paradigm shift in drug discovery processes. This can be witnessed by folklore usage of natural products and up laddering multifaceted concepts of small and lead molecule.

  • Page Number : 1–18
  • Published Date : 2023-04-10
  • Keywords
    Natural Products, Lead compound, Optimization, High Throughput Screening, Folklore medicine, Combinatorial Chemistry
  • DOI Number
    10.15415/jptrm.2023.111001
  • Authors
    Kumar Anand, Sayak Khawas, Apurva Singh, Puja kumari, Neha Nupur and Neelima Sharma

References

  • Aghababaei, F., & Hadidi, M. (2023). Recent Advances in Potential Health Benefits of Quercetin. Pharmaceuticals (Basel, Switzerland), 16(7), 1020. https://doi.org/10.3390/ph16071020
  • Albarano, L., Esposito, R., Ruocco, N., & Costantini, M. (2020). Genome Mining as New Challenge in Natural Products Discovery. Marine drugs, 18(4), 199. https://doi.org/10.3390/md18040199
  • Aminov R. I. (2010). A brief history of the antibiotic era: lessons learned and challenges for the future. Frontiers in microbiology, 1, 134. https://doi.org/10.3389/fmicb.2010.00134
  • Anand David, A. V., Arulmoli, R., & Parasuraman, S. (2016). Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid. Pharmacognosy reviews, 10(20), 84–89. https://doi.org/10.4103/0973-7847.194044
  • Aswathy, M., Vijayan, A., Daimary, U. D., Girisa, S., Radhakrishnan, K. V., & Kunnumakkara, A. B. (2022). Betulinic acid: A natural promising anticancer drug, current situation, and future perspectives. Journal of biochemical and molecular toxicology, 36(12), e23206. https://doi.org/10.1002/jbt.23206
  • Atanasov, A. G., Waltenberger, B., Pferschy-Wenzig, E. M., Linder, T., Wawrosch, C., Uhrin, P., Temml, V., Wang, L., Schwaiger, S., Heiss, E. H., Rollinger, J. M., Schuster, D., Breuss, J. M., Bochkov, V., Mihovilovic, M. D., Kopp, B., Bauer, R., Dirsch, V. M., & Stuppner, H. (2015). Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology advances, 33(8), 1582–1614. https://doi.org/10.1016/j.biotechadv.2015.08.001 Baltz R. H. (2019). Natural product drug discovery in the genomic era: realities, conjectures, misconceptions, and opportunities. Journal of industrial microbiology & biotechnology, 46(3-4), 281–299. https://doi.org/10.1007/s10295-018-2115-4
  • Bauer, A., & Brönstrup, M. (2014). Industrial natural product chemistry for drug discovery and development. Natural product reports, 31(1), 35–60. https://doi.org/10.1039/c3np70058e
  • Bentley R. (2009). Different roads to discovery; Prontosil (hence sulfa drugs) and penicillin (hence beta-lactams). Journal of industrial microbiology & biotechnology, 36(6), 775–786. https://doi.org/10.1007/s10295-009-0553-8
  • Bhullar, K. S., & Hubbard, B. P. (2015). Lifespan and healthspan extension by resveratrol. Biochimica et biophysica acta, 1852(6), 1209–1218. https://doi.org/10.1016/j.bbadis.2015.01.012
  • Boucher, J., Kleinridders, A., & Kahn, C. R. (2014). Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harbor perspectives in biology, 6(1), a009191. https://doi.org/10.1101/cshperspect.a009191
  • Cao, X., Wang, Y., Zhang, W., Zhong, X., Gunes, E. G., Dang, J., Wang, J., Epstein, A. L., Querfeld, C., Sun, Z., Rosen, S. T., & Feng, M. (2022). Targeting macrophages for enhancing CD47 blockade-elicited lymphoma clearance and overcoming tumor-induced immunosuppression. Blood, 139(22), 3290–3302. https://doi.org/10.1182/blood.2021013901
  • Cappelletti, S., Piacentino, D., Sani, G., & Aromatario, M. (2015). Caffeine: cognitive and physical performance enhancer or psychoactive drug?. Current neuropharmacology, 13(1), 71–88. https://doi.org/10.2174/1570159X13666141210215655
  • Carvalho, M. R., Truckenmuller, R., Reis, R. L., & Oliveira, J. M. (2020). Biomaterials and Microfluidics for Drug Discovery and Development. Advances in experimental medicine and biology, 1230, 121–135. https://doi.org/10.1007/978-3-030-36588-2_8
  • Chamorro-Cevallos, G., Mojica-Villegas, M. A., García-Martínez, Y., Pérez-Gutiérrez, S., Madrigal-Santillán, E., Vargas-Mendoza, N., Morales-González, J. A., & Cristóbal-Luna, J. M. (2022). A Complete Review of Mexican Plants with Teratogenic Effects. Plants (Basel, Switzerland), 11(13), 1675. https://doi.org/10.3390/plants11131675
  • Chen, Y., & Kirchmair, J. (2020). Cheminformatics in Natural Product-based Drug Discovery. Molecular informatics, 39(12), e2000171. https://doi.org/10.1002/minf.202000171
  • Cichewicz, R. H., & Kouzi, S. A. (2004). Chemistry, biological activity, and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV infection. Medicinal research reviews, 24(1), 90–114. https://doi.org/10.1002/med.10053
  • Clapp, N., Amour, A., Rowan, W. C., & Candarlioglu, P. L. (2021). Organ-on-chip applications in drug discovery: an end user perspective. Biochemical Society transactions, 49(4), 1881–1890. https://doi.org/10.1042/BST20210840
  • Cragg G. M. (1998). Paclitaxel (Taxol): a success story with valuable lessons for natural product drug discovery and development. Medicinal research reviews, 18(5), 315–331. https://doi.org/10.1002/(sici)1098-1128(199809)18:5<315::aid-med3>3.0.co;2-w
  • Cragg, G. M., & Newman, D. J. (2013). Natural products: a continuing source of novel drug leads. Biochimica et biophysica acta, 1830(6), 3670–3695. https://doi.org/10.1016/j.bbagen.2013.02.008
  • Desborough, M. J. R., & Keeling, D. M. (2017). The aspirin story - from willow to wonder drug. British journal of haematology, 177(5), 674–683. https://doi.org/10.1111/bjh.14520
  • Dias, D. A., Urban, S., & Roessner, U. (2012). A historical overview of natural products in drug discovery. Metabolites, 2(2), 303–336. https://doi.org/10.3390/metabo2020303
  • Dong, H., & Ming, D. (2023). A Comprehensive Self-Resistance Gene Database for Natural-Product Discovery with an Application to Marine Bacterial Genome Mining. International journal of molecular sciences, 24(15), 12446. https://doi.org/10.3390/ijms241512446
  • Dzobo K. (2022). The Role of Natural Products as Sources of Therapeutic Agents for Innovative Drug Discovery. Comprehensive Pharmacology, 408–422. https://doi.org/10.1016/B978-0-12-820472-6.00041-4
  • Ebob, O. T., Babiaka, S. B., & Ntie-Kang, F. (2021). Natural Products as Potential Lead Compounds for Drug Discovery Against SARS-CoV-2. Natural products and bioprospecting, 11(6), 611–628. https://doi.org/10.1007/s13659-021-00317-w
  • El-Saber Batiha, G., Magdy Beshbishy, A., G Wasef, L., Elewa, Y. H. A., A Al-Sagan, A., Abd El-Hack, M. E., Taha, A. E., M Abd-Elhakim, Y., & Prasad Devkota, H. (2020). Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.): A Review. Nutrients, 12(3), 872. https://doi.org/10.3390/nu12030872
  • Erenler, R., Meral, B., Sen, O., Elmastas, M., Aydin, A., Eminagaoglu, O., & Topcu, G. (2017). Bioassay-guided isolation, identification of compounds from Origanum rotundifolium and investigation of their antiproliferative and antioxidant activities. Pharmaceutical biology, 55(1), 1646–1653. https://doi.org/10.1080/13880209.2017.1310906
  • Fattori, D., Squarcia, A., & Bartoli, S. (2008). Fragment-based approach to drug lead discovery: overview and advances in various techniques. Drugs in R&D, 9(4), 217–227. https://doi.org/10.2165/00126839-200809040-00002
  • Foa, R., Norton, L., & Seidman, A. D. (1994). Taxol (paclitaxel): a novel anti-microtubule agent with remarkable anti-neoplastic activity. International journal of clinical & laboratory research, 24(1), 6–14. https://doi.org/10.1007/BF02592403
  • Fu, Y., Luo, J., Qin, J., & Yang, M. (2019). Screening techniques for the identification of bioactive compounds in natural products. Journal of pharmaceutical and biomedical analysis, 168, 189–200. https://doi.org/10.1016/j.jpba.2019.02.027
  • Gajula, S. N. R., Nadimpalli, N., & Sonti, R. (2021). Drug metabolic stability in early drug discovery to develop potential lead compounds. Drug metabolism reviews, 53(3), 459–477. https://doi.org/10.1080/03602532.2021.1970178
  • Gallego-Jara, J., Lozano-Terol, G., Sola-Martínez, R. A., Cánovas-Díaz, M., & de Diego Puente, T. (2020). A Compressive Review about Taxol®: History and Future Challenges. Molecules (Basel, Switzerland), 25(24), 5986. https://doi.org/10.3390/molecules25245986
  • Gazák, R., Walterová, D., & Kren, V. (2007). Silybin and silymarin--new and emerging applications in medicine. Current medicinal chemistry, 14(3), 315–338. https://doi.org/10.2174/092986707779941159
  • Geng, F. H., Li, G. H., Zhang, X., Zhang, P., Dong, M. Q., Zhao, Z. J., Zhang, Y., Dong, L., & Gao, F. (2016). Berberine improves mesenteric artery insulin sensitivity through up-regulating insulin receptor-mediated signalling in diabetic rats. British journal of pharmacology, 173(10), 1569–1579. https://doi.org/10.1111/bph.13466
  • Grabowski, K., Baringhaus, K. H., & Schneider, G. (2008). Scaffold diversity of natural products: inspiration for combinatorial library design. Natural product reports, 25(5), 892–904. https://doi.org/10.1039/b715668p
  • Graham-Brown, R. A. C., & Healsmith, M. F. (2018). From folklore to pharmacy: Putting plants into practice. Clinics in dermatology, 36(3), 282–288. https://doi.org/10.1016/j.clindermatol.2018.03.002
  • Guido, R. V., Oliva, G., & Andricopulo, A. D. (2011). Modern drug discovery technologies: opportunities and challenges in lead discovery. Combinatorial chemistry & high throughput screening, 14(10), 830–839. https://doi.org/10.2174/138620711797537067
  • Guo Z. (2016). Artemisinin anti-malarial drugs in China. Acta pharmaceutica Sinica. B, 6(2), 115–124. https://doi.org/10.1016/j.apsb.2016.01.008
  • Hannan, M. A., Rahman, M. A., Sohag, A. A. M., Uddin, M. J., Dash, R., Sikder, M. H., Rahman, M. S., Timalsina, B., Munni, Y. A., Sarker, P. P., Alam, M., Mohibbullah, M., Haque, M. N., Jahan, I., Hossain, M. T., Afrin, T., Rahman, M. M., Tahjib-Ul-Arif, M., Mitra, S., Oktaviani, D. F., … Kim, B. (2021). Black Cumin (Nigella sativa L.): A Comprehensive Review on Phytochemistry, Health Benefits, Molecular Pharmacology, and Safety. Nutrients, 13(6), 1784. https://doi.org/10.3390/nu13061784
  • Hefti F. F. (2008). Requirements for a lead compound to become a clinical candidate. BMC neuroscience, 9 Suppl 3(Suppl 3), S7. https://doi.org/10.1186/1471-2202-9-S3-S7
  • Hon, K. L., & Lee, V. W. (2017). Challenges for drug discovery and development in China. Expert opinion on drug discovery, 12(1), 105–113. https://doi.org/10.1080/17460441.2017.1257115
  • Honório, K. M., Moda, T. L., & Andricopulo, A. D. (2013). Pharmacokinetic properties and in silico ADME modeling in drug discovery. Medicinal chemistry (Shariqah (United Arab Emirates)), 9(2), 163–176. https://doi.org/10.2174/1573406411309020002
  • Hornburg, C. C., Britt, J. R., Evans, J. R., Akee, R. K., Whitt, J. A., Trinh, S. K., Harris, M. J., Thompson, J. R., Ewing, T. L., Shipley, S. M., Grothaus, P. G., Newman, D. J., Schneider, J. P., Grkovic, T., & O'Keefe, B. R. (2018). NCI Program for Natural Product Discovery: A Publicly-Accessible Library of Natural Product Fractions for High-Throughput Screening. ACS chemical biology, 13(9), 2484–2497. https://doi.org/10.1021/acschembio.8b00389
  • Hu, Y., Guo, N., Yang, T., Yan, J., Wang, W., & Li, X. (2022). The Potential Mechanisms by which Artemisinin and Its Derivatives Induce Ferroptosis in the Treatment of Cancer. Oxidative medicine and cellular longevity, 2022, 1458143. https://doi.org/10.1155/2022/1458143
  • Iao, Z., Morris-Natschke, S. L., & Lee, K. H. (2016). Strategies for the Optimization of Natural Leads to Anticancer Drugs or Drug Candidates. Medicinal research reviews, 36(1), 32–91. https://doi.org/10.1002/med.21377
  • Kane, R. C., Farrell, A. T., Saber, H., Tang, S., Williams, G., Jee, J. M., Liang, C., Booth, B., Chidambaram, N., Morse, D., Sridhara, R., Garvey, P., Justice, R., & Pazdur, R. (2006). Sorafenib for the treatment of advanced renal cell carcinoma. Clinical cancer research : an official journal of the American Association for Cancer Research, 12(24), 7271–7278. https://doi.org/10.1158/1078-0432.CCR-06-1249
  • Katz, L., & Baltz, R. H. (2016). Natural product discovery: past, present, and future. Journal of industrial microbiology & biotechnology, 43(2-3), 155–176. https://doi.org/10.1007/s10295-015-1723-5
  • Khalaf R. A. (2016). Exploring Natural Products as a Source for Antidiabetic Lead Compounds and Possible Lead Optimization. Current topics in medicinal chemistry, 16(23), 2549–2561. https://doi.org/10.2174/1568026616666160414123602
  • Khan, U. M., Sevindik, M., Zarrabi, A., Nami, M., Ozdemir, B., Kaplan, D. N., Selamoglu, Z., Hasan, M., Kumar, M., Alshehri, M. M., & Sharifi-Rad, J. (2021). Lycopene: Food Sources, Biological Activities, and Human Health Benefits. Oxidative medicine and cellular longevity, 2021, 2713511. https://doi.org/10.1155/2021/2713511
  • Kidd, S. L., Osberger, T. J., Mateu, N., Sore, H. F., & Spring, D. R. (2018). Recent Applications of Diversity-Oriented Synthesis Toward Novel, 3-Dimensional Fragment Collections. Frontiers in chemistry, 6, 460. https://doi.org/10.3389/fchem.2018.00460
  • Kim, J. H., Lee, N., Hwang, S., Kim, W., Lee, Y., Cho, S., Palsson, B. O., & Cho, B. K. (2021). Discovery of novel secondary metabolites encoded in actinomycete genomes through coculture. Journal of industrial microbiology & biotechnology, 48(3-4), kuaa001. https://doi.org/10.1093/jimb/kuaa001 Klebe G. (2006). Virtual ligand screening: strategies, perspectives and limitations. Drug discovery today, 11(13-14), 580–594. https://doi.org/10.1016/j.drudis.2006.05.012
  • Koeberle, A., & Werz, O. (2014). Multi-target approach for natural products in inflammation. Drug discovery today, 19(12), 1871–1882. https://doi.org/10.1016/j.drudis.2014.08.006
  • Kohler, D. R., & Goldspiel, B. R. (1994). Paclitaxel (taxol). Pharmacotherapy, 14(1), 3–34. https://doi.org/10.1002/j.1875-9114.1994.tb02785.x Kong, L. Y., & Tan, R. X. (2015). Artemisinin, a miracle of traditional Chinese medicine. Natural product reports, 32(12), 1617–1621. https://doi.org/10.1039/c5np00133a
  • Lam, R., Gondin, A. B., Canals, M., Kellam, B., Briddon, S. J., Graham, B., & Scammells, P. J. (2018). Fluorescently Labeled Morphine Derivatives for Bioimaging Studies. Journal of medicinal chemistry, 61(3), 1316–1329. https://doi.org/10.1021/acs.jmedchem.7b01811
  • Laux, A., Muller, A. H., Miehe, M., Dirrig-Grosch, S., Deloulme, J. C., Delalande, F., Stuber, D., Sage, D., Van Dorsselaer, A., Poisbeau, P., Aunis, D., & Goumon, Y. (2011). Mapping of endogenous morphine-like compounds in the adult mouse brain: Evidence of their localization in astrocytes and GABAergic cells. The Journal of comparative neurology, 519(12), 2390–2416. https://doi.org/10.1002/cne.22633
  • Li, J., Casteels, T., Frogne, T., Ingvorsen, C., Honoré, C., Courtney, M., Huber, K. V. M., Schmitner, N., Kimmel, R. A., Romanov, R. A., Sturtzel, C., Lardeau, C. H., Klughammer, J., Farlik, M., Sdelci, S., Vieira, A., Avolio, F., Briand, F., Baburin, I., Májek, P., … Kubicek, S. (2017). Artemisinins Target GABAA Receptor Signaling and Impair α Cell Identity. Cell, 168(1-2), 86–100.e15. https://doi.org/10.1016/j.cell.2016.11.010
  • Li, Q., & Kang, C. (2020). Mechanisms of Action for Small Molecules Revealed by Structural Biology in Drug Discovery. International journal of molecular sciences, 21(15), 5262. https://doi.org/10.3390/ijms21155262
  • Ligon B. L. (2004). Penicillin: its discovery and early development. Seminars in pediatric infectious diseases, 15(1), 52–57 https://doi.org/10.1053/j.spid.2004.02.001
  • Lima, L. M., Silva, B. N. M. D., Barbosa, G., & Barreiro, E. J. (2020). β-lactam antibiotics: An overview from a medicinal chemistry perspective. European journal of medicinal chemistry, 208, 112829. https://doi.org/10.1016/j.ejmech.2020.112829
  • Lin, C. R., Tsai, S. H. L., Wang, C., Lee, C. L., Hung, S. W., Ting, Y. T., & Hung, Y. C. (2023). Willow Bark (Salix spp.) Used for Pain Relief in Arthritis: A Meta-Analysis of Randomized Controlled Trials. Life (Basel, Switzerland), 13(10), 2058. https://doi.org/10.3390/life13102058
  • Lin, Z., Zhang, Y., Zhang, Y., Shen, H., Hu, L., Jiang, H., & Shen, X. (2008). Oleanolic acid derivative NPLC441 potently stimulates glucose transport in 3T3-L1 adipocytes via a multi-target mechanism. Biochemical pharmacology, 76(10), 1251–1262. https://doi.org/10.1016/j.bcp.2008.08.016
  • Liu, R., Dong, H. F., & Jiang, M. S. (2012). Artemisinin: the gifts from traditional Chinese medicine not only for malaria control but also for schistosomiasis control. Parasitology research, 110(5), 2071–2074. https://doi.org/10.1007/s00436-011-2707-7
  • Liu, R., Li, X., & Lam, K. S. (2017). Combinatorial chemistry in drug discovery. Current opinion in chemical biology, 38, 117–126. https://doi.org/10.1016/j.cbpa.2017.03.017
  • Liu, Y., Wang, Z. Y., Xu, W. J., Zhang, C. J., & Dong, L. (2019). Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica, 44(17), 3637–3644. https://doi.org/10.19540/j.cnki.cjcmm.20190629.310
  • Ludy, M. J., Moore, G. E., & Mattes, R. D. (2012). The effects of capsaicin and capsiate on energy balance: critical review and meta-analyses of studies in humans. Chemical senses, 37(2), 103–121. https://doi.org/10.1093/chemse/bjr100
  • Luo, Y., Cobb, R. E., & Zhao, H. (2014). Recent advances in natural product discovery. Current opinion in biotechnology, 30, 230–237. https://doi.org/10.1016/j.copbio.2014.09.002
  • Ma, S., Wang, X., Lai, F., & Lou, C. (2020). The beneficial pharmacological effects and potential mechanisms of picroside II: Evidence of its benefits from in vitro and in vivo. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 130, 110421. https://doi.org/10.1016/j.biopha.2020.110421 Malve H. (2016). Exploring the ocean for new drug developments: Marine pharmacology. Journal of pharmacy & bioallied sciences, 8(2), 83–91. https://doi.org/10.4103/0975-7406.171700
  • McLellan, T. M., Caldwell, J. A., & Lieberman, H. R. (2016). A review of caffeine's effects on cognitive, physical and occupational performance. Neuroscience and biobehavioral reviews, 71, 294–312. https://doi.org/10.1016/j.neubiorev.2016.09.001
  • Meissner, F., Geddes-McAlister, J., Mann, M., & Bantscheff, M. (2022). The emerging role of mass spectrometry-based proteomics in drug discovery. Nature reviews. Drug discovery, 21(9), 637–654. https://doi.org/10.1038/s41573-022-00409-3
  • Mishra, B. B., & Tiwari, V. K. (2011). Natural products: an evolving role in future drug discovery. European journal of medicinal chemistry, 46(10), 4769–4807. https://doi.org/10.1016/j.ejmech.2011.07.057
  • Molinski T. F. (2014). All natural: the renaissance of natural products chemistry. Organic letters, 16(15), 3849–3855. https://doi.org/10.1021/ol501917g Mukherjee, R., Kumar, V., Srivastava, S. K., Agarwal, S. K., & Burman, A. C. (2006). Betulinic acid derivatives as anticancer agents: structure activity relationship. Anti-cancer agents in medicinal chemistry, 6(3), 271–279. https://doi.org/10.2174/187152006776930846
  • Musial, C., Kuban-Jankowska, A., & Gorska-Ponikowska, M. (2020). Beneficial Properties of Green Tea Catechins. International journal of molecular sciences, 21(5), 1744. https://doi.org/10.3390/ijms21051744
  • Najmi, A., Javed, S. A., Al Bratty, M., & Alhazmi, H. A. (2022). Modern Approaches in the Discovery and Development of Plant-Based Natural Products and Their Analogues as Potential Therapeutic Agents. Molecules (Basel, Switzerland), 27(2), 349. https://doi.org/10.3390/molecules27020349
  • Nehlig, A., Daval, J. L., & Debry, G. (1992). Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain research. Brain research reviews, 17(2), 139–170. https://doi.org/10.1016/0165-0173(92)90012-b
  • Newman, D. J., & Cragg, G. M. (2020). Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. Journal of natural products, 83(3), 770–803. https://doi.org/10.1021/acs.jnatprod.9b01285
  • Oboh, M., Govender, L., Siwela, M., & Mkhwanazi, B. N. (2021). Anti-Diabetic Potential of Plant-Based Pentacyclic Triterpene Derivatives: Progress Made to Improve Efficacy and Bioavailability. Molecules (Basel, Switzerland), 26(23), 7243. https://doi.org/10.3390/molecules26237243
  • Ortholand, J. Y., & Ganesan, A. (2004). Natural products and combinatorial chemistry: back to the future. Current opinion in chemical biology, 8(3), 271–280. https://doi.org/10.1016/j.cbpa.2004.04.011
  • Patocka, J., Nepovimova, E., Wu, W., & Kuca, K. (2020). Digoxin: Pharmacology and toxicology-A review. Environmental toxicology and pharmacology, 79, 103400. https://doi.org/10.1016/j.etap.2020.103400
  • Patridge, E., Gareiss, P., Kinch, M. S., & Hoyer, D. (2016). An analysis of FDA-approved drugs: natural products and their derivatives. Drug discovery today, 21(2), 204–207. https://doi.org/10.1016/j.drudis.2015.01.009
  • Pirintsos, S., Panagiotopoulos, A., Bariotakis, M., Daskalakis, V., Lionis, C., Sourvinos, G., Karakasiliotis, I., Kampa, M., & Castanas, E. (2022). From Traditional Ethnopharmacology to Modern Natural Drug Discovery: A Methodology Discussion and Specific Examples. Molecules (Basel, Switzerland), 27(13), 4060. https://doi.org/10.3390/molecules27134060
  • Pleszczyńska, M., Wiater, A., Siwulski, M., Lemieszek, M. K., Kunaszewska, J., Kaczor, J., Rzeski, W., Janusz, G., & Szczodrak, J. (2016). Cultivation and utility of Piptoporus betulinus fruiting bodies as a source of anticancer agents. World journal of microbiology & biotechnology, 32(9), 151. https://doi.org/10.1007/s11274-016-2114-4
  • Prescott, T. A. K., Hill, R., Mas-Claret, E., Gaya, E., & Burns, E. (2023). Fungal Drug Discovery for Chronic Disease: History, New Discoveries and New Approaches. Biomolecules, 13(6), 986. https://doi.org/10.3390/biom13060986
  • Rakheja, I., Ansari, A. H., Ray, A., Chandra Joshi, D., & Maiti, S. (2022). Small molecule quercetin binds MALAT1 triplex and modulates its cellular function. Molecular therapy. Nucleic acids, 30, 241–256. https://doi.org/10.1016/j.omtn.2022.09.016
  • Ramos-Hryb, A. B., Pazini, F. L., Kaster, M. P., & Rodrigues, A. L. S. (2017). Therapeutic Potential of Ursolic Acid to Manage Neurodegenerative and Psychiatric Diseases. CNS drugs, 31(12), 1029–1041. https://doi.org/10.1007/s40263-017-0474-4
  • Ren, M., Jiang, S., Wang, Y., Pan, X., Pan, F., & Wei, X. (2023). Discovery and excavation of lichen bioactive natural products. Frontiers in microbiology, 14, 1177123. https://doi.org/10.3389/fmicb.2023.1177123
  • Saneja, A., Arora, D., Kumar, R., Dubey, R. D., Panda, A. K., & Gupta, P. N. (2018). Therapeutic applications of betulinic acid nanoformulations. Annals of the New York Academy of Sciences, 1421(1), 5–18. https://doi.org/10.1111/nyas.13570
  • Sarkar, C., Quispe, C., Jamaddar, S., Hossain, R., Ray, P., Mondal, M., Abdulwanis Mohamed, Z., Sani Jaafaru, M., Salehi, B., Islam, M. T., Faizal Abdull Razis, A., Martorell, M., Pastene-Navarrete, E., & Sharifi-Rad, J. (2020). Therapeutic promises of ginkgolide A: A literature-based review. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 132, 110908. https://doi.org/10.1016/j.biopha.2020.110908
  • Seib, K. L., Dougan, G., & Rappuoli, R. (2009). The key role of genomics in modern vaccine and drug design for emerging infectious diseases. PLoS genetics, 5(10), e1000612. https://doi.org/10.1371/journal.pgen.1000612
  • Shah, K. K., Kogut, S., & Slitt, A. (2021). Challenges in Evaluating Safety and Efficacy in Drug Development for Rare Diseases: A Review for Pharmacists. Journal of pharmacy practice, 34(3), 472–479. https://doi.org/10.1177/0897190020930972
  • Sukmarini L. (2021). Recent Advances in Discovery of Lead Structures from Microbial Natural Products: Genomics- and Metabolomics-Guided Acceleration. Molecules (Basel, Switzerland), 26(9), 2542. https://doi.org/10.3390/molecules26092542
  • Sun, D., Gao, W., Hu, H., & Zhou, S. (2022). Why 90% of clinical drug development fails and how to improve it?. Acta pharmaceutica Sinica. B, 12(7), 3049–3062. https://doi.org/10.1016/j.apsb.2022.02.002
  • Szymański, P., Markowicz, M., & Mikiciuk-Olasik, E. (2012). Adaptation of high-throughput screening in drug discovery-toxicological screening tests. International journal of molecular sciences, 13(1), 427–452. https://doi.org/10.3390/ijms13010427
  • Taylor, D. M., & Werneke, U. (2018). Ethnopharmacology†. Nordic journal of psychiatry, 72(sup1), S30–S32. https://doi.org/10.1080/08039488.2018.1525636 Teixeira S. (2002). Bioflavonoids: proanthocyanidins and quercetin and their potential roles in treating musculoskeletal conditions. The Journal of orthopaedic and sports physical therapy, 32(7), 357–363. https://doi.org/10.2519/jospt.2002.32.7.357
  • Tuli, H. S., Mistry, H., Kaur, G., Aggarwal, D., Garg, V. K., Mittal, S., Yerer, M. B., Sak, K., & Khan, M. A. (2022). Gallic Acid: A Dietary Polyphenol that Exhibits Anti-neoplastic Activities by Modulating Multiple Oncogenic Targets. Anti-cancer agents in medicinal chemistry, 22(3), 499–514. https://doi.org/10.2174/1871520621666211119085834
  • van Breemen, R. B., Muchiri, R. N., Bates, T. A., Weinstein, J. B., Leier, H. C., Farley, S., & Tafesse, F. G. (2022). Cannabinoids Block Cellular Entry of SARS-CoV-2 and the Emerging Variants. Journal of natural products, 85(1), 176–184. https://doi.org/10.1021/acs.jnatprod.1c00946\
  • Van der Walt, E. M., Milczek, E. M., Malan, S. F., Edmondson, D. E., Castagnoli, N., Jr, Bergh, J. J., & Petzer, J. P. (2009). Inhibition of monoamine oxidase by (E)-styrylisatin analogues. Bioorganic & medicinal chemistry letters, 19(9), 2509–2513. https://doi.org/10.1016/j.bmcl.2009.03.030 Wang, K., Feng, X., Chai, L., Cao, S., & Qiu, F. (2017). The metabolism of berberine and its contribution to the pharmacological effects. Drug metabolism reviews, 49(2), 139–157. https://doi.org/10.1080/03602532.2017.1306544
  • Wiley, D. S., Redfield, S. E., & Zon, L. I. (2017). Chemical screening in zebrafish for novel biological and therapeutic discovery. Methods in cell biology, 138, 651–679. https://doi.org/10.1016/bs.mcb.2016.10.004
  • Wishart D. S. (2016). Emerging applications of metabolomics in drug discovery and precision medicine. Nature reviews. Drug discovery, 15(7), 473–484. https://doi.org/10.1038/nrd.2016.32
  • Xu, Y., Liu, J., Wu, Y., Guo, Q., Sun, H., & Chen, G. (2015). Natural products against hematological malignancies and identification of their targets. Science China. Life sciences, 58(12), 1191–1201. https://doi.org/10.1007/s11427-015-4922-4
  • Yang, C. H., & Horwitz, S. B. (2017). Taxol®: The First Microtubule Stabilizing Agent. International journal of molecular sciences, 18(8), 1733. https://doi.org/10.3390/ijms18081733
  • Yuan, H., Ma, Q., Ye, L., & Piao, G. (2016). The Traditional Medicine and Modern Medicine from Natural Products. Molecules (Basel, Switzerland), 21(5), 559. https://doi.org/10.3390/molecules21050559
  • Zhang, M. M., Qiao, Y., Ang, E. L., & Zhao, H. (2017). Using natural products for drug discovery: the impact of the genomics era. Expert opinion on drug discovery, 12(5), 475–487. https://doi.org/10.1080/17460441.2017.1303478
  • Zhang, M., Sala, C., Hartkoorn, R. C., Dhar, N., Mendoza-Losana, A., & Cole, S. T. (2012). Streptomycin-starved Mycobacterium tuberculosis 18b, a drug discovery tool for latent tuberculosis. Antimicrobial agents and chemotherapy, 56(11), 5782–5789. https://doi.org/10.1128/AAC.01125-12
  • Zhang, W., Hong, D., Zhou, Y., Zhang, Y., Shen, Q., Li, J. Y., Hu, L. H., & Li, J. (2006). Ursolic acid and its derivative inhibit protein tyrosine phosphatase 1B, enhancing insulin receptor phosphorylation and stimulating glucose uptake. Biochimica et biophysica acta, 1760(10), 1505–1512. https://doi.org/10.1016/j.bbagen.2006.05.009
  • Zhang, Z., & Tang, W. (2018). Drug metabolism in drug discovery and development. Acta pharmaceutica Sinica. B, 8(5), 721–732. https://doi.org/10.1016/j.apsb.2018.04.003
  • Zhao, H., & Akritopoulou-Zanze, I. (2010). When analoging is not enough: scaffold discovery in medicinal chemistry. Expert opinion on drug discovery, 5(2), 123–134. https://doi.org/10.1517/17460440903584874