Role of Silver and Gold Nanoparticles in the Management of Diabetes: Current Trends and Perspectives

Published: November 10, 2022

Authors

  • Mohammad Amir
  • Manisha Vohra
  • Amit Sharma
  • Sheetu Wadhwa
Keywords
Diabetes mellitus, Gold nanoparticles, Silver nanoparticles, Copper nanoparticles, Selenium nano-particles

Abstract

Background:Diabetes mellitus is a severe metabolic disease in which a person’s body cannot control the glucose level in the blood; it results from a defect in insulin secretion, insulin action, or both. Nanotechnology is a rising area in pharmaceutical sciences as nanoparticles are reported to enhance drug efficacy obtained from plant sources through green synthesis.

Purpose: The purpose of this review is to focus on the antidiabetic potential of various metallic nanoparticles like silver, gold, copper, and selenium by using their secondary metabolites like tannins, alkaloids, saponins, and steroids. The advantages of green nanoparticle synthesis are that they are eco-friendly, high temperature is not required, can be used on large-scale synthesis, and are cost-effective.

Methods:A preliminary search was conducted in PubMed, OVID Medline, Embase, ScienceDirect, Web of Science, and Google Scholar databases using keywords such as “Diabetes, nanoparticles, metallic nanoparticles, gold nanoparticles, silver nanoparticles.”

Results: This review includes various marketed formulations of silver and gold nanoparticles particles obtained from various biological sources like allium cepa, argyreia nervosa, callophyllumtomentosum, punica granatum, cassia auriculate, saracaasoka, gymnemasylvestre, etc. along with their research findings for reducing the antidiabetic activity.

Conclusion:This review contains details about the silver and gold nanoparticles obtained from various biological sources used to treat diabetes.

References

Abideen, S., &Vijayasankar, M. (2015). In-vitro Screening of Antidiabetic and Antimicrobial Activity against Green Synthesized AgNO3 using Seaweeds. Journal of Nanomedicine & Nanotechnology, 2015, 0-0.https://doi.org/10.4172/2157-7439.S6-001

Akhtar, M. S., Panwar, J., & Yun, Y. S. (2013). Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustainable Chemistry & Engineering1(6), 591-602.https://doi.org/10.1021/sc300118u

American Association of Diabetes Educators. (2008). AADE7 self-care behaviors. Diabetes Educ34(3), 445-449. https://doi.org/10.1177/0145721708316625

Anwar, N., Shah, M., Saleem, S., Rahman, H. (2018). Plant mediated synthesis of silver nanoparticles and their biological applications. Bulletin of the Chemical Society of Ethiopia, 32(3), 469-79.https://dx.doi.org/10.4314/bcse.v32i3.6

Aquilante, C. L. (2010). Sulfonylurea pharmacogenomics in Type 2 diabetes: the influence of drug target and diabetes risk polymorphisms. Expert review of cardiovascular therapy8(3), 359-372.https://doi.org/10.1586/erc.09.154

Balan, K., Qing, W., Wang, Y., Liu, X., Palvannan, T., Wang, Y., … & Zhang, Y. (2016). Antidiabetic activity of silver nanoparticles from green synthesis using Lonicera japonica leaf extract. Rsc Advances6(46), 40162-40168. https://doi.org/10.1039/C5RA24391B

Berlin, I., Bisserbe, J. C., Eiber, R., Balssa, N., Sachon, C., Bosquet, F., & Grimaldi, A. (1997). Phobic symptoms, particularly the fear of blood and injury, are associated with poor glycemic control in type I diabetic adults. Diabetes care20(2), 176-178.https://doi.org/10.2337/diacare.20.2.176

Bhardwaj, M., Yadav, P., Dalal, S., &Kataria, S. K. (2020). A review on ameliorative green nanotechnological approaches in diabetes management. Biomedicine & Pharmacotherapy127, 110198.https://doi.org/10.1016/j.biopha.2020.110198

Bhujbal, S. (2016). Preparation, characterization and in vitro evaluation of metformin loaded hyaluronic acid nanoparticles for oral delivery. Creighton University.

Boulé, N. G., Haddad, E., Kenny, G. P., Wells, G. A., &Sigal, R. J. (2001). Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. Jama286(10), 1218-1227.https://doi.org/10.1001/jama.286.10.1218

Daisy, P., &Saipriya, K. (2012). Biochemical analysis of Cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus. International journal of nanomedicine7, 1189.https://doi.org/10.2147/IJN.S26650

Dhas, T. S., Kumar, V. G., Karthick, V., Vasanth, K., Singaravelu, G., &Govindaraju, K. (2016). Effect of biosynthesized gold nanoparticles by Sargassum swartzii in alloxan induced diabetic rats. Enzyme and microbial technology95, 100-106.https://doi.org/10.1016/j.enzmictec.2016.09.003

Dong, J. L., Wen, B., Song, Z., Chai, J., Liu, B., Tian, W. J., … & Yang, B. S. (2021). Potential antidiabetic molecule involving a new chromium (III) complex of dipicolinic and metformin as a counter ion: Synthesis, structure, spectroscopy, and bioactivity in mice. Arabian Journal of Chemistry14(7), 103236. https://doi.org/10.1016/j.arabjc.2021.103236

Elahi, N., Kamali, M., & Baghersad, M. H. (2018). Recent biomedical applications of gold nanoparticles: A review. Talanta184, 537-556.https://doi.org/10.1016/j.talanta.2018.02.088

Endo, Y., Suzuki, M., Yamada, H., Horita, S., Kunimi, M., Yamazaki, O., … & Fujita, T. (2011). Thiazolidinediones enhance sodium-coupled bicarbonate absorption from renal proximal tubules via PPARγ-dependent nongenomic signaling. Cell Metabolism13(5), 550-561.https://doi.org/10.1016/j.cmet.2011.02.015

Fowler, M. J. (2007). Diabetes treatment, part 2: oral agents for glycemic management. Clinical diabetes25(4), 131-134.https://doi.org/10.2337/diaclin.25.4.131

Gardea-Torresdey, J. L., Tiemann, K. J., Gamez, G., Dokken, K., Tehuacanero, S., & Jose-Yacaman, M. (1999). Gold nanoparticles obtained by bio-precipitation from gold (III) solutions. Journal of Nanoparticle Research1(3), 397-404.https://doi.org/10.1023/A:1010008915465

Garg, A., Pandey, P., Sharma, P., & Shukla, A. (2016). Synthesis and characterization of silver nanoparticle of ginger rhizome (Zingiber officinale) extract: synthesis, characterization and anti diabetic activity in streptozotocin induced diabetic rats. European Journal of Biomedical and Pharmaceutical Sciences3(7), 605-611.

Giovannucci, E., Harlan, D. M., Archer, M. C., Bergenstal, R. M., Gapstur, S. M., Habel, L. A., … & Yee, D. (2010). Diabetes and cancer: a consensus report. Diabetes care33(7), 1674-1685.https://doi.org/10.2337/dc10-0666

Goldenberg, R., &Punthakee, Z. (2013). Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome. Canadian journal of diabetes37, S8-S11. https://doi.org/10.1016/j.jcjd.2013.01.011

Gonder‐Frederick, L. A., Fisher, C. D., Ritterband, L. M., Cox, D. J., Hou, L., DasGupta, A. A., & Clarke, W. L. (2006). Predictors of fear of hypoglycemia in adolescents with type 1 diabetes and their parents. Pediatric diabetes7(4), 215-222.https://doi.org/10.1111/j.1399-5448.2006.00182.x

Govindappa, M., Hemashekhar, B., Arthikala, M. K., Rai, V. R., & Ramachandra, Y. L. (2018). Characterization, antibacterial, antioxidant, antidiabetic, anti-inflammatory and antityrosinase activity of green synthesized silver nanoparticles using Calophyllumtomentosum leaves extract. Results in Physics9, 400-408.https://doi.org/10.1016/j.rinp.2018.02.049

Greenfield, JR., Chisholm, DJ. (2004). Thiazolidinediones – mechanisms of action. Australian Prescriber. 27, 67-70. https://doi.org/10.18773/austprescr.2004.059.

Guo, Y., Jiang, N., Zhang, L., & Yin, M. (2020). Green synthesis of gold nanoparticles from Fritillaria cirrhosa and its antidiabetic activity on Streptozotocin induced rats. Arabian Journal of Chemistry13(4), 5096-5106.https://doi.org/10.1016/j.arabjc.2020.02.009

Hayes, R. P., Fitzgerald, J. T., &Jacober, S. J. (2008). Primary care physician beliefs about insulin initiation in patients with type 2 diabetes. International journal of clinical practice62(6), 860-868.https://doi.org/10.1111/j.1742-1241.2008.01742.x

Hazarika, M., Boruah, P. K., Pal, M., Das, M. R., &Tamuly, C. (2019). Synthesis of Pd‐rGO Nanocomposite for the Evaluation of In Vitro Anticancer and Antidiabetic Activities. ChemistrySelect4(4), 1244-1250.https://doi.org/10.1002/slct.201802789

Herlekar, M., Barve, S., & Kumar, R. (2014). Plant-mediated green synthesis of iron nanoparticles. Journal of Nanoparticles2014.https://doi.org/10.1155/2014/140614

Hua, S., De Matos, M. B., Metselaar, J. M., & Storm, G. (2018). Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Frontiers in pharmacology9, 790. https://doi.org/10.3389/fphar.2018.00790

Irshad, A., Sarwar, N., Sadia, H., Riaz, M., Sharif, S., Shahid, M., & Khan, J. A. (2020). Silver nanoparticles: synthesis and characterization by using glucans extracted from Pleurotusostreatus. Applied Nanoscience10(8), 3205-3214.https://doi.org/10.1007/s13204-019-01103-4

Jain, A., Anitha, R., &Rajeshkumar, S. J. R. J. (2019). Anti inflammatory activity of Silver nanoparticles synthesised using Cumin oil. Research Journal of Pharmacy and Technology12(6), 2790-2793.https://doi.org/10.5958/0974-360X.2019.00469.4

Jamdade, D. A., Rajpali, D., Joshi, K. A., Kitture, R., Kulkarni, A. S., Shinde, V. S., … & Ghosh, S. (2019). Gnidia glauca-and Plumbago zeylanica-mediated synthesis of novel copper nanoparticles as promising antidiabetic agents. Advances in pharmacological sciences2019.https://doi.org/10.1155/2019/9080279

Jini, D., & Sharmila, S. (2020). Green synthesis of silver nanoparticles from Allium cepa and its in vitro antidiabetic activity. Materials Today: Proceedings22, 432-438.https://doi.org/10.1016/j.matpr.2019.07.672

Kalsi, A., Singh, S., Taneja, N., Kukal, S., & Mani, S. (2017). Current treatments for type 2 diabetes, their side effects and possible complementary treatments. International Journal10(3).

Karthick, V., Kumar, V. G., Dhas, T. S., Singaravelu, G., Sadiq, A. M., &Govindaraju, K. (2014). Effect of biologically synthesized gold nanoparticles on alloxan-induced diabetic rats—an in vivo approach. Colloids and Surfaces B: Biointerfaces122, 505-511.https://doi.org/10.1016/j.colsurfb.2014.07.022

Kesavadev, J., Sadikot, S. M., Saboo, B., Shrestha, D., Jawad, F., Azad, K., … & Kalra, S. (2014). Challenges in type 1 diabetes management in South East Asia: descriptive situational assessment. Indian journal of endocrinology and metabolism18(5), 600.https://doi.org/10.4103/2230-8210.139210

Khan, M., Khan, M., Adil, S. F., Tahir, M. N., Tremel, W., Alkhathlan, H. Z., … & Siddiqui, M. R. H. (2013). Green synthesis of silver nanoparticles mediated by Pulicariaglutinosa extract. International journal of nanomedicine8, 1507.https://doi.org/10.2147/IJN.S43309

Kotwani, A., Ewen, M., Dey, D., Iyer, S., Lakshmi, P. K., Patel, A., … & Laing, R. (2007). Prices & availability of common medicines at six sites in India using a standard methodology. Indian journal of medical research125(5), 645-654.PMID: 17642500

Li, X. Q., Elliott, D. W., & Zhang, W. X. (2008). Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. In Particulate Systems in Nano-and Biotechnologies (pp. 309-330). CRC Press.

Liu, Y., Zeng, S., Liu, Y., Wu, W., Shen, Y., Zhang, L., … & Wang, C. (2018). Synthesis and antidiabetic activity of selenium nanoparticles in the presence of polysaccharides from Catathelasmaventricosum. International journal of biological macromolecules114, 632-639.https://doi.org/10.1016/j.ijbiomac.2018.03.161

Manam, D., Kiran, V., & Murugesan, S. (2014). Biological synthesis of silver nanoparticles from marine alga Colpomeniasinuosa and its in vitro antidiabetic activity. American Journal of Bio-pharmacology Biochemistry and Life Sciences (AJBBL) AJBBL3(01), 01-07.http://www.ajbbl.com/html/AJBBL_2014_3_1/vishu_editedecond%20Ms.pdf

Miller, C. D., Phillips, L. S., Ziemer, D. C., Gallina, D. L., Cook, C. B., & El-Kebbi, I. M. (2001). Hypoglycemia in patients with type 2 diabetes mellitus. Archives of Internal Medicine, 161(13), 1653-1659.https://doi.org/10.1001/archinte.161.13.1653

Odegard, P. S., &Capoccia, K. (2007). Medication taking and diabetes. The Diabetes Educator33(6), 1014-1029.https://doi.org/10.1177/0145721707308407

Ozougwu, J. C., Obimba, K. C., Belonwu, C. D., &Unakalamba, C. B. (2013). The pathogenesis and pathophysiology of type 1 and type 2 diabetes mellitus. J PhysiolPathophysiol4(4), 46-57. https://doi.org/10.5897/JPAP2013.0001

Panigrahi, S., Kundu, S., Ghosh, S., Nath, S., Pal, T. (2004). General method of synthesis for metal nanoparticles. Journal of Nanoparticle Research, 6(4), 411-4.https://doi.org/10.1007/s11051-004-6575-2

Patra, N., Kar, D., Pal, A., & Behera, A. (2018). Antibacterial, anticancer, antidiabetic and catalytic activity of bio-conjugated metal nanoparticles. Advances in Natural Sciences: Nanoscience and Nanotechnology9(3), 035001.https://doi.org/10.1088/2043-6254/aad12d

Povey R.C., & Clark-Carter D. (2007). Diabetes and healthy eating. The Diabetes Educator. 33(6). 931-959. https://doi.org/10.1177/0145721707308632

Pradhan, P., Joseph, L., George, M., Kaushik, N., &Chulet, R. (2010). Pharmacognostic, phytochemical and quantitative investigation of Saracaasoca leaves. Journal of Pharmacy Research3(4), 776-780.

Rajarajeshwari, T., Shivashri, C., & Rajasekar, P. (2014). Synthesis and characterization of biocompatible gymnemic acid–gold nanoparticles: a study on glucose uptake stimulatory effect in 3T3-L1 adipocytes. RSC Advances4(108), 63285-63295.https://doi.org/10.1039/C4RA07087A

Rajaram, K., Aiswarya, D. C., &Sureshkumar, P. (2015). Green synthesis of silver nanoparticle using Tephrosia tinctoria and its antidiabetic activity. Materials Letters138, 251-254.https://doi.org/10.1016/j.matlet.2014.10.017

Ramanathan, R., Field, M. R., O’Mullane, A. P., Smooker, P. M., Bhargava, S. K., & Bansal, V. (2013). Aqueous phase synthesis of copper nanoparticles: a link between heavy metal resistance and nanoparticle synthesis ability in bacterial systems. Nanoscale5(6), 2300-2306. https://doi.org/10.1039/C2NR32887A

Sangeetha, G., Rajeshwari, S., & Venckatesh, R. (2011). Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: Structure and optical properties. Materials Research Bulletin46(12), 2560-2566.https://doi.org/10.1016/j.materresbull.2011.07.046

Santhosh, S. B., Chandrasekar, M. J. N., Kaviarasan, L., Deepak, P., Silambarasan, T., & Gayathri, B. (2020). Chemical composition, antibacterial, anti-oxidant and cytotoxic properties of green synthesized silver nanoparticles from Annona muricata L.(Annonaceae). Research Journal of Pharmacy and Technology13(1), 33-39.https://doi.org/10.5958/0974-360X.2020.00006.2

Santhoshkumar, J., Rajeshkumar, S., & Kumar, S. V. (2017). Phyto-assisted synthesis, characterization and applications of gold nanoparticles–A review. Biochemistry and biophysics reports11, 46-57.https://doi.org/10.1016/j.bbrep.2017.06.004

Saratale, G. D., Saratale, R. G., Benelli, G., Kumar, G., Pugazhendhi, A., Kim, D. S., & Shin, H. S. (2017). Antidiabetic potential of silver nanoparticles synthesized with Argyreia nervosa leaf extract high synergistic antibacterial activity with standard antibiotics against foodborne bacteria. Journal of Cluster Science28(3), 1709-1727.https://doi.org/10.1007/s10876-017-1179-z

Saratale, R. G., Shin, H. S., Kumar, G., Benelli, G., Kim, D. S., & Saratale, G. D. (2018). Exploiting antidiabetic activity of silver nanoparticles synthesized using Punica granatum leaves and anticancer potential against human liver cancer cells (HepG2). Artificial cells, nanomedicine, and biotechnology46(1), 211-222. https://doi.org/10.1080/21691401.2017.1337031

Sarli, S., &Ghasemi, N. (2020). Optimization of biosynthesized Zn nano-particles by poisonous Taxus baccata leaves extract and evaluation of their effect on the bacterias and MCF-7 cancer cells. Eurasian Chem. Commun2, 302-318.https://doi.org/10.33945/SAMI/ECC.2020.3.2

Senthilkumar, P., Santhosh Kumar, D. S., Sudhagar, B., Vanthana, M., Parveen, M. H., Sarathkumar, S., … & Kannan, C. (2016). Seagrass-mediated silver nanoparticles synthesis by Enhalusacoroides and its α-glucosidase inhibitory activity from the Gulf of Mannar. Journal of Nanostructure in Chemistry6(3), 275-280. https://doi.org/10.1007/s40097-016-0200-7

Shahverdi, A. R., Fakhimi, A., Shahverdi, H. R., & Minaian, S. (2007). Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine: Nanotechnology, Biology and Medicine3(2), 168-171.https://doi.org/10.1016/j.nano.2007.02.001

Sharma, A., Anghore, D., Awasthi, R., Kosey, S., Jindal, S., Gupta, N., … &Sood, R. (2015). A review on current carbon nanomaterials and other nano-particles technology and their applications in biomedicine. World Journal Pharmacy and Pharmaceutical Science4(12), 1088-113.

Sharma, A., Baldi, A., & Kumar Sharma, D. (2021). Economic costs of hospitalisation and length of stay in diabetes with coexisting hypertension with correlation to laboratory investigations: Where does India stand? A 5‐year ground report. International Journal of Clinical Practice75(5), e13990.https://doi.org/10.1111/ijcp.13990

Sharma, A., Baldi, A., & Sharma, D. K. (2018). Assessment of drug-related problems among diabetes and cardiovascular disease patients in a tertiary care teaching hospital. Pharm Aspire10(1), 7-12.

Sharma, A., Sharma, P., Anghore, D. (2017). Diabetes and its complications. 1st ed. Amit S, editor. Moga: Lambert Academic Publishing.

Sharma, A., Sharma, P., Gaur, A., Chhabra, M., & Kaur, R. (2017). A cross-sectional study on diabetes mellitus type-2 at a tertiary care hospital. Adv Res Gastroentero Hepatol8(1), 001-6.https://doi.org/10.19080/argh.2017.08.555726

Su, H., Wang, Y., Gu, Y., Bowman, L., Zhao, J., & Ding, M. (2018). Potential applications and human biosafety of nanomaterials used in nanomedicine. Journal of Applied Toxicology38(1), 3-24.https://doi.org/10.1002/jat.3476

Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B. B., … & Magliano, D. J. (2022). IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes research and clinical practice183, 109119.https://doi.org/10.1016/j.diabres.2021.109119

Sundrarajan, M., & Gowri, S. (2011). Green synthesis of titanium dioxide nanoparticles by Nyctanthesarbor-tristis leaves extract. Chalcogenide Lett8(8), 447-451.

Thakkar, K. N., Mhatre, S. S., & Parikh, R. Y. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine: nanotechnology, biology and medicine6(2), 257-262.https://doi.org/10.1016/j.nano.2009.07.002

Thirumurugan, A., Aswitha, P., Kiruthika, C., Nagarajan, S., & Christy, A. N. (2016). Green synthesis of platinum nanoparticles using Azadirachta indica–An eco-friendly approach. Materials Letters170, 175-178.https://doi.org/10.1016/j.matlet.2016.02.026

Tripathy, A., Raichur, A. M., Chandrasekaran, N., Prathna, T. C., & Mukherjee, A. (2010). Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica (Neem) leaves. Journal of Nanoparticle Research12(1), 237-246.https://doi.org/10.1007/s11051-009-9602-5

Umrani, R. D., & Paknikar, K. M. (2014). Zinc oxide nanoparticles show antidiabetic activity in streptozotocin-induced Type 1 and 2 diabetic rats. Nanomedicine (London, England)9(1), 89–104. https://doi.org/10.2217/nnm.12.205.

Venkatachalam, M., Govindaraju, K., Sadiq, A. M., Tamilselvan, S., Kumar, V. G., & Singaravelu, G. (2013). Functionalization of gold nanoparticles as antidiabetic nanomaterial. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy116, 331-338.https://doi.org/10.1016/j.saa.2013.07.038

Vijay, K., Suresh, R., Loganathasamy, K., Narayanan, V., Pandiyan, V., & Satheesh Kumar, T. (2008). Antidiabetic effects of vanadium Pentoxide Nanopartices in STZ induced diabetic rats. International Journal of Pure & Applied Bioscience6(3), 460-467. https://doi.org/10.18782/2320-7051.6203

Wilson, S., Cholan, S., Vishnu, U., Sannan, M., Jananiya, R., Vinodhini, S., Rajeswari, D.V. (2015). In vitro assessment of the efficacy of free-standing silver nanoparticles isolated from Centella asiatica against oxidative stress and its antidiabetic activity, Der Pharmacia Lettre, 7(12),194–205.

Yakoob, A. T., Tajuddin, N. B., Hussain, M. I. M., Mathew, S., Govindaraju, A., & Qadri, I. (2016). Antioxidant and hypoglycemic activities of clausenaanisata (Willd.) Hook F. ex benth. root mediated synthesized silver nanoparticles. Pharmacognosy Journal8(6).https://doi.org/10.5530/pj.2016.6.10

Yamamoto, S., &Watarai, H. (2006). Surface-enhanced Raman spectroscopy of dodecanethiol-bound silver nanoparticles at the liquid/liquid interface. Langmuir22(15), 6562-6569.https://doi.org/10.1021/la0603119

Yang, Z., Li, Z., Lu, X., He, F., Zhu, X., Ma, Y., … & Yi, Y. (2017). Controllable biosynthesis and properties of gold nanoplates using yeast extract. Nano-micro letters9(1), 1-13.https://doi.org/10.1007/s40820-016-0102-8

Yeh, Y. C., Creran, B., &Rotello, V. M. (2012). Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale4(6), 1871-1880.https://doi.org/10.1039/C1NR11188D

How to Cite

Mohammad Amir, Manisha Vohra, Amit Sharma and Sheetu Wadhwa. Role of Silver and Gold Nanoparticles in the Management of Diabetes: Current Trends and Perspectives. J. Pharm. Technol. Res. Manag.. 2022, 10, 159-169
Role of Silver and Gold Nanoparticles in the Management of Diabetes: Current Trends and Perspectives

Current Issue

PeriodicityBiannually
Issue-1May
Issue-2November
ISSN Print2321-2217
ISSN Online2321-2225
RNI No.CHAENG/2013/50088
OA Policy

Publisher's policy of the journal at Sherpa UK for the submitted, accepted, and published articles. Click OAPolicy

Plan-S Compliance

To check compliance, one has to use the Journal Check Tool (JCT). This tool provided by cOAlition S (European funders) for the researchers (fundee) to check the compliance with the journal.

Recommend journal to your library

You can recommend the journal being a researcher or faculty member to your library. We will post a copy of the Journal to your library on your behalf at free of cost.
Click here: Recommend Journal

Preprint Arxiv Submission

The authors are encouraged to submit the author’s copy (preprint) to appropriate preprint archives e.g. https://arxiv.org and/or on https://indiarxiv.org or institutional repositories (e.g., D Space) before paper acceptance by the editor of Journal. After publications of the paper author(s) should mention the citation information, title and abstract along with DOI number of the publication carefully on the required page of the depository(ies).

Contact: Phone: +91-172-2741000, +91-172-4691800

Email : editor.jptrm@chitkara.edu.in;

Abstract and Indexing

Information

This work is licensed under a Creative Commons Attribution 4.0 International License.

Articles in Journal of Pharmaceutical Technology, Research and Management (J. Pharm. Tech. Res. Management) by Chitkara University Publications are Open Access articles that are published with licensed under a Creative Commons Attribution- CC-BY 4.0 International License. Based on a work at https://jptrm.chitkara.edu.in/. This license permits one to use, remix, tweak and reproduction in any medium, even commercially provided one give credit for the original creation.

View Legal Code of the above-mentioned license, https://creativecommons.org/licenses/by/4.0/legalcode

View Licence Deed here https://creativecommons.org/licenses/by/4.0/

Creative Commons License

Journal of Pharmaceutical Technology, Research and Management by Chitkara University Publications is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at https://jptrm.chitkara.edu.in//

Members