Role of Silver and Gold Nanoparticles in the Management of Diabetes: Current Trends and Perspectives
Abstract
Background:Diabetes mellitus is a severe metabolic disease in which a person’s body cannot control the glucose level in the blood; it results from a defect in insulin secretion, insulin action, or both. Nanotechnology is a rising area in pharmaceutical sciences as nanoparticles are reported to enhance drug efficacy obtained from plant sources through green synthesis.
Purpose: The purpose of this review is to focus on the antidiabetic potential of various metallic nanoparticles like silver, gold, copper, and selenium by using their secondary metabolites like tannins, alkaloids, saponins, and steroids. The advantages of green nanoparticle synthesis are that they are eco-friendly, high temperature is not required, can be used on large-scale synthesis, and are cost-effective.
Methods:A preliminary search was conducted in PubMed, OVID Medline, Embase, ScienceDirect, Web of Science, and Google Scholar databases using keywords such as “Diabetes, nanoparticles, metallic nanoparticles, gold nanoparticles, silver nanoparticles.”
Results: This review includes various marketed formulations of silver and gold nanoparticles particles obtained from various biological sources like allium cepa, argyreia nervosa, callophyllumtomentosum, punica granatum, cassia auriculate, saracaasoka, gymnemasylvestre, etc. along with their research findings for reducing the antidiabetic activity.
Conclusion:This review contains details about the silver and gold nanoparticles obtained from various biological sources used to treat diabetes.
- Page Number : 159-169
-
Published Date : 2022-11-10
- Keywords
Diabetes mellitus, Gold nanoparticles, Silver nanoparticles, Copper nanoparticles, Selenium nano-particles - DOI Number
10.15415/jptrm.2022.102006 -
Authors
- Mohammad Amir
- Manisha Vohra
- Amit Sharma
- Sheetu Wadhwa
References
- Abideen, S., &Vijayasankar, M. (2015). In-vitro Screening of Antidiabetic and Antimicrobial Activity against Green Synthesized AgNO3 using Seaweeds. Journal of Nanomedicine & Nanotechnology, 2015, 0-0.https://doi.org/10.4172/2157-7439.S6-001
- Akhtar, M. S., Panwar, J., & Yun, Y. S. (2013). Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustainable Chemistry & Engineering, 1(6), 591-602.https://doi.org/10.1021/sc300118u
- American Association of Diabetes Educators. (2008). AADE7 self-care behaviors. Diabetes Educ, 34(3), 445-449. https://doi.org/10.1177/0145721708316625
- Anwar, N., Shah, M., Saleem, S., Rahman, H. (2018). Plant mediated synthesis of silver nanoparticles and their biological applications. Bulletin of the Chemical Society of Ethiopia, 32(3), 469-79.https://dx.doi.org/10.4314/bcse.v32i3.6
- Aquilante, C. L. (2010). Sulfonylurea pharmacogenomics in Type 2 diabetes: the influence of drug target and diabetes risk polymorphisms. Expert review of cardiovascular therapy, 8(3), 359-372.https://doi.org/10.1586/erc.09.154
- Balan, K., Qing, W., Wang, Y., Liu, X., Palvannan, T., Wang, Y., ... & Zhang, Y. (2016). Antidiabetic activity of silver nanoparticles from green synthesis using Lonicera japonica leaf extract. Rsc Advances, 6(46), 40162-40168. https://doi.org/10.1039/C5RA24391B
- Berlin, I., Bisserbe, J. C., Eiber, R., Balssa, N., Sachon, C., Bosquet, F., & Grimaldi, A. (1997). Phobic symptoms, particularly the fear of blood and injury, are associated with poor glycemic control in type I diabetic adults. Diabetes care, 20(2), 176-178.https://doi.org/10.2337/diacare.20.2.176
- Bhardwaj, M., Yadav, P., Dalal, S., &Kataria, S. K. (2020). A review on ameliorative green nanotechnological approaches in diabetes management. Biomedicine & Pharmacotherapy, 127, 110198.https://doi.org/10.1016/j.biopha.2020.110198
- Bhujbal, S. (2016). Preparation, characterization and in vitro evaluation of metformin loaded hyaluronic acid nanoparticles for oral delivery. Creighton University.
- Boulé, N. G., Haddad, E., Kenny, G. P., Wells, G. A., &Sigal, R. J. (2001). Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. Jama, 286(10), 1218-1227.https://doi.org/10.1001/jama.286.10.1218
- Daisy, P., &Saipriya, K. (2012). Biochemical analysis of Cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus. International journal of nanomedicine, 7, 1189.https://doi.org/10.2147/IJN.S26650
- Dhas, T. S., Kumar, V. G., Karthick, V., Vasanth, K., Singaravelu, G., &Govindaraju, K. (2016). Effect of biosynthesized gold nanoparticles by Sargassum swartzii in alloxan induced diabetic rats. Enzyme and microbial technology, 95, 100-106.https://doi.org/10.1016/j.enzmictec.2016.09.003
- Dong, J. L., Wen, B., Song, Z., Chai, J., Liu, B., Tian, W. J., ... & Yang, B. S. (2021). Potential antidiabetic molecule involving a new chromium (III) complex of dipicolinic and metformin as a counter ion: Synthesis, structure, spectroscopy, and bioactivity in mice. Arabian Journal of Chemistry, 14(7), 103236. https://doi.org/10.1016/j.arabjc.2021.103236
- Elahi, N., Kamali, M., & Baghersad, M. H. (2018). Recent biomedical applications of gold nanoparticles: A review. Talanta, 184, 537-556.https://doi.org/10.1016/j.talanta.2018.02.088
- Endo, Y., Suzuki, M., Yamada, H., Horita, S., Kunimi, M., Yamazaki, O., ... & Fujita, T. (2011). Thiazolidinediones enhance sodium-coupled bicarbonate absorption from renal proximal tubules via PPARγ-dependent nongenomic signaling. Cell Metabolism, 13(5), 550-561.https://doi.org/10.1016/j.cmet.2011.02.015
- Fowler, M. J. (2007). Diabetes treatment, part 2: oral agents for glycemic management. Clinical diabetes, 25(4), 131-134.https://doi.org/10.2337/diaclin.25.4.131
- Gardea-Torresdey, J. L., Tiemann, K. J., Gamez, G., Dokken, K., Tehuacanero, S., & Jose-Yacaman, M. (1999). Gold nanoparticles obtained by bio-precipitation from gold (III) solutions. Journal of Nanoparticle Research, 1(3), 397-404.https://doi.org/10.1023/A:1010008915465
- Garg, A., Pandey, P., Sharma, P., & Shukla, A. (2016). Synthesis and characterization of silver nanoparticle of ginger rhizome (Zingiber officinale) extract: synthesis, characterization and anti diabetic activity in streptozotocin induced diabetic rats. European Journal of Biomedical and Pharmaceutical Sciences, 3(7), 605-611.
- Giovannucci, E., Harlan, D. M., Archer, M. C., Bergenstal, R. M., Gapstur, S. M., Habel, L. A., ... & Yee, D. (2010). Diabetes and cancer: a consensus report. Diabetes care, 33(7), 1674-1685.https://doi.org/10.2337/dc10-0666
- Goldenberg, R., &Punthakee, Z. (2013). Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome. Canadian journal of diabetes, 37, S8-S11. https://doi.org/10.1016/j.jcjd.2013.01.011
- Gonder‐Frederick, L. A., Fisher, C. D., Ritterband, L. M., Cox, D. J., Hou, L., DasGupta, A. A., & Clarke, W. L. (2006). Predictors of fear of hypoglycemia in adolescents with type 1 diabetes and their parents. Pediatric diabetes, 7(4), 215-222.https://doi.org/10.1111/j.1399-5448.2006.00182.x
- Govindappa, M., Hemashekhar, B., Arthikala, M. K., Rai, V. R., & Ramachandra, Y. L. (2018). Characterization, antibacterial, antioxidant, antidiabetic, anti-inflammatory and antityrosinase activity of green synthesized silver nanoparticles using Calophyllumtomentosum leaves extract. Results in Physics, 9, 400-408.https://doi.org/10.1016/j.rinp.2018.02.049
- Greenfield, JR., Chisholm, DJ. (2004). Thiazolidinediones - mechanisms of action. Australian Prescriber. 27, 67-70. https://doi.org/10.18773/austprescr.2004.059.
- Guo, Y., Jiang, N., Zhang, L., & Yin, M. (2020). Green synthesis of gold nanoparticles from Fritillaria cirrhosa and its antidiabetic activity on Streptozotocin induced rats. Arabian Journal of Chemistry, 13(4), 5096-5106.https://doi.org/10.1016/j.arabjc.2020.02.009
- Hayes, R. P., Fitzgerald, J. T., &Jacober, S. J. (2008). Primary care physician beliefs about insulin initiation in patients with type 2 diabetes. International journal of clinical practice, 62(6), 860-868.https://doi.org/10.1111/j.1742-1241.2008.01742.x
- Hazarika, M., Boruah, P. K., Pal, M., Das, M. R., &Tamuly, C. (2019). Synthesis of Pd‐rGO Nanocomposite for the Evaluation of In Vitro Anticancer and Antidiabetic Activities. ChemistrySelect, 4(4), 1244-1250.https://doi.org/10.1002/slct.201802789
- Herlekar, M., Barve, S., & Kumar, R. (2014). Plant-mediated green synthesis of iron nanoparticles. Journal of Nanoparticles, 2014.https://doi.org/10.1155/2014/140614
- Hua, S., De Matos, M. B., Metselaar, J. M., & Storm, G. (2018). Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Frontiers in pharmacology, 9, 790. https://doi.org/10.3389/fphar.2018.00790
- Irshad, A., Sarwar, N., Sadia, H., Riaz, M., Sharif, S., Shahid, M., & Khan, J. A. (2020). Silver nanoparticles: synthesis and characterization by using glucans extracted from Pleurotusostreatus. Applied Nanoscience, 10(8), 3205-3214.https://doi.org/10.1007/s13204-019-01103-4
- Jain, A., Anitha, R., &Rajeshkumar, S. J. R. J. (2019). Anti inflammatory activity of Silver nanoparticles synthesised using Cumin oil. Research Journal of Pharmacy and Technology, 12(6), 2790-2793.https://doi.org/10.5958/0974-360X.2019.00469.4
- Jamdade, D. A., Rajpali, D., Joshi, K. A., Kitture, R., Kulkarni, A. S., Shinde, V. S., ... & Ghosh, S. (2019). Gnidia glauca-and Plumbago zeylanica-mediated synthesis of novel copper nanoparticles as promising antidiabetic agents. Advances in pharmacological sciences, 2019.https://doi.org/10.1155/2019/9080279
- Jini, D., & Sharmila, S. (2020). Green synthesis of silver nanoparticles from Allium cepa and its in vitro antidiabetic activity. Materials Today: Proceedings, 22, 432-438.https://doi.org/10.1016/j.matpr.2019.07.672
- Kalsi, A., Singh, S., Taneja, N., Kukal, S., & Mani, S. (2017). Current treatments for type 2 diabetes, their side effects and possible complementary treatments. International Journal, 10(3).
- Karthick, V., Kumar, V. G., Dhas, T. S., Singaravelu, G., Sadiq, A. M., &Govindaraju, K. (2014). Effect of biologically synthesized gold nanoparticles on alloxan-induced diabetic rats—an in vivo approach. Colloids and Surfaces B: Biointerfaces, 122, 505-511.https://doi.org/10.1016/j.colsurfb.2014.07.022
- Kesavadev, J., Sadikot, S. M., Saboo, B., Shrestha, D., Jawad, F., Azad, K., ... & Kalra, S. (2014). Challenges in type 1 diabetes management in South East Asia: descriptive situational assessment. Indian journal of endocrinology and metabolism, 18(5), 600.https://doi.org/10.4103/2230-8210.139210
- Khan, M., Khan, M., Adil, S. F., Tahir, M. N., Tremel, W., Alkhathlan, H. Z., ... & Siddiqui, M. R. H. (2013). Green synthesis of silver nanoparticles mediated by Pulicariaglutinosa extract. International journal of nanomedicine, 8, 1507.https://doi.org/10.2147/IJN.S43309
- Kotwani, A., Ewen, M., Dey, D., Iyer, S., Lakshmi, P. K., Patel, A., ... & Laing, R. (2007). Prices & availability of common medicines at six sites in India using a standard methodology. Indian journal of medical research, 125(5), 645-654.PMID: 17642500
- Li, X. Q., Elliott, D. W., & Zhang, W. X. (2008). Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. In Particulate Systems in Nano-and Biotechnologies (pp. 309-330). CRC Press.
- Liu, Y., Zeng, S., Liu, Y., Wu, W., Shen, Y., Zhang, L., ... & Wang, C. (2018). Synthesis and antidiabetic activity of selenium nanoparticles in the presence of polysaccharides from Catathelasmaventricosum. International journal of biological macromolecules, 114, 632-639.https://doi.org/10.1016/j.ijbiomac.2018.03.161
- Manam, D., Kiran, V., & Murugesan, S. (2014). Biological synthesis of silver nanoparticles from marine alga Colpomeniasinuosa and its in vitro antidiabetic activity. American Journal of Bio-pharmacology Biochemistry and Life Sciences (AJBBL) AJBBL, 3(01), 01-07.http://www.ajbbl.com/html/AJBBL_2014_3_1/vishu_editedecond%20Ms.pdf
- Miller, C. D., Phillips, L. S., Ziemer, D. C., Gallina, D. L., Cook, C. B., & El-Kebbi, I. M. (2001). Hypoglycemia in patients with type 2 diabetes mellitus. Archives of Internal Medicine, 161(13), 1653-1659.https://doi.org/10.1001/archinte.161.13.1653
- Odegard, P. S., &Capoccia, K. (2007). Medication taking and diabetes. The Diabetes Educator, 33(6), 1014-1029.https://doi.org/10.1177/0145721707308407
- Ozougwu, J. C., Obimba, K. C., Belonwu, C. D., &Unakalamba, C. B. (2013). The pathogenesis and pathophysiology of type 1 and type 2 diabetes mellitus. J PhysiolPathophysiol, 4(4), 46-57. https://doi.org/10.5897/JPAP2013.0001
- Panigrahi, S., Kundu, S., Ghosh, S., Nath, S., Pal, T. (2004). General method of synthesis for metal nanoparticles. Journal of Nanoparticle Research, 6(4), 411-4.https://doi.org/10.1007/s11051-004-6575-2
- Patra, N., Kar, D., Pal, A., & Behera, A. (2018). Antibacterial, anticancer, antidiabetic and catalytic activity of bio-conjugated metal nanoparticles. Advances in Natural Sciences: Nanoscience and Nanotechnology, 9(3), 035001.https://doi.org/10.1088/2043-6254/aad12d
- Povey R.C., & Clark-Carter D. (2007). Diabetes and healthy eating. The Diabetes Educator. 33(6). 931-959. https://doi.org/10.1177/0145721707308632
- Pradhan, P., Joseph, L., George, M., Kaushik, N., &Chulet, R. (2010). Pharmacognostic, phytochemical and quantitative investigation of Saracaasoca leaves. Journal of Pharmacy Research, 3(4), 776-780.
- Rajarajeshwari, T., Shivashri, C., & Rajasekar, P. (2014). Synthesis and characterization of biocompatible gymnemic acid–gold nanoparticles: a study on glucose uptake stimulatory effect in 3T3-L1 adipocytes. RSC Advances, 4(108), 63285-63295.https://doi.org/10.1039/C4RA07087A
- Rajaram, K., Aiswarya, D. C., &Sureshkumar, P. (2015). Green synthesis of silver nanoparticle using Tephrosia tinctoria and its antidiabetic activity. Materials Letters, 138, 251-254.https://doi.org/10.1016/j.matlet.2014.10.017
- Ramanathan, R., Field, M. R., O’Mullane, A. P., Smooker, P. M., Bhargava, S. K., & Bansal, V. (2013). Aqueous phase synthesis of copper nanoparticles: a link between heavy metal resistance and nanoparticle synthesis ability in bacterial systems. Nanoscale, 5(6), 2300-2306. https://doi.org/10.1039/C2NR32887A
- Sangeetha, G., Rajeshwari, S., & Venckatesh, R. (2011). Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: Structure and optical properties. Materials Research Bulletin, 46(12), 2560-2566.https://doi.org/10.1016/j.materresbull.2011.07.046
- Santhosh, S. B., Chandrasekar, M. J. N., Kaviarasan, L., Deepak, P., Silambarasan, T., & Gayathri, B. (2020). Chemical composition, antibacterial, anti-oxidant and cytotoxic properties of green synthesized silver nanoparticles from Annona muricata L.(Annonaceae). Research Journal of Pharmacy and Technology, 13(1), 33-39.https://doi.org/10.5958/0974-360X.2020.00006.2
- Santhoshkumar, J., Rajeshkumar, S., & Kumar, S. V. (2017). Phyto-assisted synthesis, characterization and applications of gold nanoparticles–A review. Biochemistry and biophysics reports, 11, 46-57.https://doi.org/10.1016/j.bbrep.2017.06.004
- Saratale, G. D., Saratale, R. G., Benelli, G., Kumar, G., Pugazhendhi, A., Kim, D. S., & Shin, H. S. (2017). Antidiabetic potential of silver nanoparticles synthesized with Argyreia nervosa leaf extract high synergistic antibacterial activity with standard antibiotics against foodborne bacteria. Journal of Cluster Science, 28(3), 1709-1727.https://doi.org/10.1007/s10876-017-1179-z
- Saratale, R. G., Shin, H. S., Kumar, G., Benelli, G., Kim, D. S., & Saratale, G. D. (2018). Exploiting antidiabetic activity of silver nanoparticles synthesized using Punica granatum leaves and anticancer potential against human liver cancer cells (HepG2). Artificial cells, nanomedicine, and biotechnology, 46(1), 211-222. https://doi.org/10.1080/21691401.2017.1337031
- Sarli, S., &Ghasemi, N. (2020). Optimization of biosynthesized Zn nano-particles by poisonous Taxus baccata leaves extract and evaluation of their effect on the bacterias and MCF-7 cancer cells. Eurasian Chem. Commun, 2, 302-318.https://doi.org/10.33945/SAMI/ECC.2020.3.2
- Senthilkumar, P., Santhosh Kumar, D. S., Sudhagar, B., Vanthana, M., Parveen, M. H., Sarathkumar, S., ... & Kannan, C. (2016). Seagrass-mediated silver nanoparticles synthesis by Enhalusacoroides and its α-glucosidase inhibitory activity from the Gulf of Mannar. Journal of Nanostructure in Chemistry, 6(3), 275-280. https://doi.org/10.1007/s40097-016-0200-7
- Shahverdi, A. R., Fakhimi, A., Shahverdi, H. R., & Minaian, S. (2007). Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine: Nanotechnology, Biology and Medicine, 3(2), 168-171.https://doi.org/10.1016/j.nano.2007.02.001
- Sharma, A., Anghore, D., Awasthi, R., Kosey, S., Jindal, S., Gupta, N., ... &Sood, R. (2015). A review on current carbon nanomaterials and other nano-particles technology and their applications in biomedicine. World Journal Pharmacy and Pharmaceutical Science, 4(12), 1088-113.
- Sharma, A., Baldi, A., & Kumar Sharma, D. (2021). Economic costs of hospitalisation and length of stay in diabetes with coexisting hypertension with correlation to laboratory investigations: Where does India stand? A 5‐year ground report. International Journal of Clinical Practice, 75(5), e13990.https://doi.org/10.1111/ijcp.13990
- Sharma, A., Baldi, A., & Sharma, D. K. (2018). Assessment of drug-related problems among diabetes and cardiovascular disease patients in a tertiary care teaching hospital. Pharm Aspire, 10(1), 7-12.
- Sharma, A., Sharma, P., Anghore, D. (2017). Diabetes and its complications. 1st ed. Amit S, editor. Moga: Lambert Academic Publishing.
- Sharma, A., Sharma, P., Gaur, A., Chhabra, M., & Kaur, R. (2017). A cross-sectional study on diabetes mellitus type-2 at a tertiary care hospital. Adv Res Gastroentero Hepatol, 8(1), 001-6.https://doi.org/10.19080/argh.2017.08.555726
- Su, H., Wang, Y., Gu, Y., Bowman, L., Zhao, J., & Ding, M. (2018). Potential applications and human biosafety of nanomaterials used in nanomedicine. Journal of Applied Toxicology, 38(1), 3-24.https://doi.org/10.1002/jat.3476
- Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B. B., ... & Magliano, D. J. (2022). IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes research and clinical practice, 183, 109119.https://doi.org/10.1016/j.diabres.2021.109119
- Sundrarajan, M., & Gowri, S. (2011). Green synthesis of titanium dioxide nanoparticles by Nyctanthesarbor-tristis leaves extract. Chalcogenide Lett, 8(8), 447-451.
- Thakkar, K. N., Mhatre, S. S., & Parikh, R. Y. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine: nanotechnology, biology and medicine, 6(2), 257-262.https://doi.org/10.1016/j.nano.2009.07.002
- Thirumurugan, A., Aswitha, P., Kiruthika, C., Nagarajan, S., & Christy, A. N. (2016). Green synthesis of platinum nanoparticles using Azadirachta indica–An eco-friendly approach. Materials Letters, 170, 175-178.https://doi.org/10.1016/j.matlet.2016.02.026
- Tripathy, A., Raichur, A. M., Chandrasekaran, N., Prathna, T. C., & Mukherjee, A. (2010). Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica (Neem) leaves. Journal of Nanoparticle Research, 12(1), 237-246.https://doi.org/10.1007/s11051-009-9602-5
- Umrani, R. D., & Paknikar, K. M. (2014). Zinc oxide nanoparticles show antidiabetic activity in streptozotocin-induced Type 1 and 2 diabetic rats. Nanomedicine (London, England), 9(1), 89–104. https://doi.org/10.2217/nnm.12.205.
- Venkatachalam, M., Govindaraju, K., Sadiq, A. M., Tamilselvan, S., Kumar, V. G., & Singaravelu, G. (2013). Functionalization of gold nanoparticles as antidiabetic nanomaterial. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 116, 331-338.https://doi.org/10.1016/j.saa.2013.07.038
- Vijay, K., Suresh, R., Loganathasamy, K., Narayanan, V., Pandiyan, V., & Satheesh Kumar, T. (2008). Antidiabetic effects of vanadium Pentoxide Nanopartices in STZ induced diabetic rats. International Journal of Pure & Applied Bioscience, 6(3), 460-467. https://doi.org/10.18782/2320-7051.6203
- Wilson, S., Cholan, S., Vishnu, U., Sannan, M., Jananiya, R., Vinodhini, S., Rajeswari, D.V. (2015). In vitro assessment of the efficacy of free-standing silver nanoparticles isolated from Centella asiatica against oxidative stress and its antidiabetic activity, Der Pharmacia Lettre, 7(12),194–205.
- Yakoob, A. T., Tajuddin, N. B., Hussain, M. I. M., Mathew, S., Govindaraju, A., & Qadri, I. (2016). Antioxidant and hypoglycemic activities of clausenaanisata (Willd.) Hook F. ex benth. root mediated synthesized silver nanoparticles. Pharmacognosy Journal, 8(6).https://doi.org/10.5530/pj.2016.6.10
- Yamamoto, S., &Watarai, H. (2006). Surface-enhanced Raman spectroscopy of dodecanethiol-bound silver nanoparticles at the liquid/liquid interface. Langmuir, 22(15), 6562-6569.https://doi.org/10.1021/la0603119
- Yang, Z., Li, Z., Lu, X., He, F., Zhu, X., Ma, Y., ... & Yi, Y. (2017). Controllable biosynthesis and properties of gold nanoplates using yeast extract. Nano-micro letters, 9(1), 1-13.https://doi.org/10.1007/s40820-016-0102-8
- Yeh, Y. C., Creran, B., &Rotello, V. M. (2012). Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale, 4(6), 1871-1880.https://doi.org/10.1039/C1NR11188D