Prediction of the Anti-Parkinson’s Effect of Phytoconstituents from Mucuna Pruriens with the use of Prediction of Activities Spectra of Substances Software

Published: November 10, 2022

Authors

  • Sakshi Sharma
  • Navneet Khurana
  • Vikas Sharma
  • Soumik Chaudhury
  • Samriti, Talluri Sriram
  • Neha Sharma
Keywords
Parkinson’s disease, Levodopa, Prediction of activities spectra of substances software

Abstract

Mucuna pruriens Linn is the most popular plant which has been used for a long time for treating many diseases. The plants shows wide pharmacological activities like antidiabetic, antineoplastic, antiepileptic, aphrodisiac, antimicrobial activities etc. It has wide use in the treatment of the Parkinson’s disease. The rationale behind this study is to discover the maximum activities over the selected phytoconstituent of the plant Mucuna pruriens which can be used in Parkinson’s disease. With the help of Prediction of activities spectra of substances (PASS) software activities which are useful in the management of Parkinson’s disease can be recognized. The mol file of the compounds was downloaded from Pubchem and the activity of the various compounds was speculated in the PASS software. From the data we have noted the Pa values of the compounds and the related activities of the compounds then we have predicted the reported activities of the compounds and from the table and graph we have observed the higher and lowest value of the compounds showing different activities and also observed which are the compounds which does not show the activities.

References

(PDF) In Vitro evaluation of the antibacterial activity of Mucuna pruriens leaf and callus extracts. (n.d.). Retrieved April 5, 2023, from https://www.researchgate.net/ publication/263311975_In_Vitro_evaluation_of_ the_antibacterial_activity_of_Mucuna_pruriens_leaf_ and_callus_extracts

(PDF) Phytochemistry and pharmacological activity of Mucuna pruriens: A review. (n.d.). Retrieved April 5, 2023, from https://www.researchgate.net/ publication/317304163_Phytochemistry_and_ pharmacological_activity_of_Mucuna_pruriens_A_ review

(PDF) Review on “Mucuna” – The wonder plant. (n.d.). Retrieved April 5, 2023, from https://www. researchgate.net/publication/287916753_Review_ on_Mucuna_-_The_wonder_plant5-Hydroxy tryptophan. (n.d.).

Antonini, A., Poewe, W., Chaudhuri, K. R., Jech, R., Pickut, B., Pirto Sek G, Z., Szasz, J., Valldeoriola, F., Winkler, C., Bergmann, L., Yegin, A., Onuk, K., & Barch, D. (2017). Levodopa-carbidopa intestinal gel in advanced Parkinson’s: Final results of the GLORIA registry. Parkinsonism and Related Disorders, 45, 13–20. https://doi.org/10.1016/j.parkreldis.2017.09.018

Armstrong, M. J., & Okun, M. S. (2020). Diagnosis and Treatment of Parkinson Disease: A Review. JAMA, 323(6), 548–560. https://doi.org/10.1001/JAMA.2019.22360

Badhani, B., Sharma, N., & Kakkar, R. (2015). Gallic acid: a versatile antioxidant with promising therapeutic and industrial applications. RSC Advances, 5(35), 27540–27557. https://doi.org/10.1039/C5RA01911G

Bajracharya, R., Bustamante, S., & Ballard, J. W. O. (2019). Stearic Acid Supplementation in High Protein to Carbohydrate (P:C) Ratio Diet Improves Physiological            and         Mitochondrial      Functions              of Drosophila melanogaster parkin Null Mutants. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 74(10), 1564–1572. https://doi.org/10.1093/GERONA/GLX246

Bufotenin oxide | C12H16N2O2 – PubChem. (n.d.). Retrieved April 5, 2023, from https://pubchem.ncbi. nlm.nih.gov/compound/Bufotenin-oxide

Calzetti, S., & Negrotti, A. (2023). Permanent non- progressive cinnarizine and flunarizine-induced parkinsonism: An under-recognized tardive syndrome in the elderly? Journal of the Neurological Sciences, 444, 120526. https://doi.org/10.1016/J.JNS.2022.120526

Charleston, S. S., & Clegg, K. M. (1972). ASCORBIC ACID AND THE COMMON COLD. The Lancet, 299(7765), 1401–1402. https://doi.org/10.1016/S0140-6736(72)91143-9

Farnsworth, N. R., Akerele, O., Bingel, A. S., Soejarto, D. D., & Guo, Z. (1985). Medicinal plants in therapy. Bulletin of the World Health Organization, 63(6), 965. https://doi.org/10.1016/0378-8741(87)90016-x

High Levels of Levodopa Found in Mucuna Pruriens Supplements | Mucuna Pruriens Supplements May Lead to Excess Levodopa in Patients | Parkinson’s News Today. (n.d.). Retrieved March 30, 2023, from https:// parkinsonsnewstoday.com/news/high-levels-levodopa- found-mucuna-pruriens-supplements/

Iderberg, H., McCreary, A. C., Varney, M. A., Cenci, M. A., & Newman-Tancredi, A. (2015). Activity of serotonin 5-HT(1A) receptor “biased agonists” in rat models of Parkinson’s disease and L-DOPA-induced dyskinesia. Neuropharmacology, 93, 52–67. https:// doi.org/10.1016/J.NEUROPHARM.2015.01.012

Ishikawa, S., Taira, T., Niki, T., Takahashi-Niki, K., Maita, C., Maita, H., Ariga, H., & Iguchi-Ariga, S. M. M. (2009). Oxidative status of DJ-1-dependent activation of dopamine synthesis through interaction of tyrosine hydroxylase  and 4-dihydroxy-L-phenylalanine (L-DOPA) decarboxylase with DJ-1. The Journal of Biological Chemistry, 284(42), 8832–28844. https://doi.org/10.1074/JBC.M109.019950

 

James, E., Keppler, J., L Robertshaw, T., & Sessa, B. (2022).             N,N-dimethyltryptamine and Amazonian ayahuasca plant medicine. Human Psychopharmacology: Clinical and Experimental, 37(3), e2835. https://doi.org/10.1002/HUP.2835

Johnson, G. H., & Fritsche, K. (2012). Effect of dietary linoleic acid on markers of inflammation in healthy persons: a systematic review of randomized controlled trials. Journal of the Academy of Nutrition and Dietetics, 112(7). https://doi.org/10.1016/J.JAND.2012.03.029

Kabuto, H., Yamanushi, T. T., Janjua, N., Takayama, F., & Mankura, M. (2013). Effects of squalene/squalane on dopamine levels, antioxidant enzyme activity, and fatty acid composition in the striatum of Parkinson’s disease mouse model. Journal of Oleo Science, 62(1), 21–28. https://doi.org/10.5650/JOS.62.21

Katzenschlager, R., & Lees, A. J. (2002). Treatment of Parkinson’s disease: levodopa as the first choice. Journal of Neurology, 249 Suppl 2(2). https://doi.org/10.1007/S00415-002-1204-4

Katzenshlager, R., Evans, A., Manson, A., Palsalos, P. N., Ratnaraj, N., Watt, H., Timmermann, L., Van Der Giessen, R., & Lees, A. J. (2004). Mucuna pruriens in Parkinson’s disease: a double blind clinical and pharmacological study. Journal of Neurology, Neurosurgery & Psychiatry, 75(12), 1672–1677. https://doi.org/10.1136/JNNP.2003.028761

Kim, Y. C. (2010). Neuroprotective phenolics in medicinal plants. Archives of Pharmacal Research, 33(10), 1611– 1632. https://doi.org/10.1007/S12272-010-1011-X

Kumar, P., & Saha, S. (2013). An updated review on Taxonomy, Phytochemistry, Pharmacology and Toxicology of Macuna Pruriens. Journal of Pharmacognosy and Phytochemistry, 2(1), 306–314. https://www.phytojournal.com/archives/2013. v2.i1.636/an-updated-review-on-taxonomy- phytochemistry-pharmacology-and-toxicology-of- macuna-pruriens

Kumar, R., Kumar, R., Anand, A., Sharma, N., & Khurana, N. (2018). Prediction of Anti-Parkinson Potential of Phytoconstituents using Prediction of Activity Spectra of Substances Software. Asian Journal of Pharmaceutical and Clinical Research, 11(Special Issue 2), 48–56. https://doi.org/10.22159/AJPCR.2018.V11S2.28578

Lagunin, A., Stepanchikova, A., Filimonov, D., & Poroikov, V. (2000). PASS: prediction of activity spectra for biologically active substances. Bioinformatics, 16(8), 747–748. https://doi.org/10.1093/ BIOINFORMATICS/16.8.747

Lampariello, L., Cortelazzo, A., Guerranti, R., Sticozzi, C., & Valacchi, G. (2012). The Magic Velvet Bean of Mucuna pruriens. Journal of Traditional and Complementary Medicine, 2(4), 331. https://doi.org/10.1016/S2225-4110(16)30119-5

Lanoue, A. C., Dumitriu, A., Myers, R. H., & Soghomonian, J. J. (2010). Decreased glutamic acid decarboxylase mRNA expression in prefrontal cortex in Parkinson’s disease. Experimental Neurology, 226(1), 207. https:/doi.org/10.1016/J.EXPNEUROL.2010.09.001

Levodopa. (n.d.). https://pubchem.ncbi.nlm.nih.gov/ compound/Levodopa

Lopez, S., Bermudez, B., Pacheco, Y. M., Ortega, A., Varela, L. M., Abia, R., & Muriana, F. J. G. (2010). Oleic Acid: The Main Component of Olive Oil on Postprandial Metabolic Processes. Olives and Olive Oil in Health and Disease Prevention, 1385–1393. https:// doi.org/10.1016/B978-0-12-374420-3.00154-6

Mack, J. M., Schamne, M. G., Sampaio, T. B., Pértile, R. A. N., Fernandes, P. A. C. M., Markus, R. P., & Prediger, R. D. (2016). Melatoninergic System in Parkinson’s Disease: From Neuroprotection to the Management of Motor and Nonmotor Symptoms. Oxidative Medicine and Cellular Longevity, 2016. https://doi.org/10.1155/2016/3472032

 

Martínez-Banaclocha, M. A. (2012). N-acetyl-cysteine in the treatment of Parkinson’s disease. What are we waiting for? Medical Hypotheses, 79(1), 8–12. https://doi.org/10.1016/J.MEHY.2012.03.021

Matsubara, K., Aoyama, K., Suno, M., & Awaya, T. (2002). N-methylation underlying Parkinson’s disease. Neurotoxicology and Teratology, 24(5), 593–598. https://doi.org/10.1016/S0892-0362(02)00212-X

Meloni, M., Puligheddu, M., Carta, M., Cannas, A., Figorilli, M., & Defazio, G. (2020). Efficacy and safety of 5-hydroxytryptophan on depression and apathy in Parkinson’s disease: a preliminary finding. European Journal of Neurology, 27(5), 779–786. https://doi.org/10.1111/ENE.14179

Metzdorf, J., & Tönges, L. (2021). Short-chain fatty acids in the context of Parkinson’s disease. Neural Regeneration Research, 16(10), 2015. https://doi.org/10.4103/1673-5374.308089

Misiura, M., & Miltyk, W. (2019). Proline-containing peptides-New insight and implications: A Review. BioFactors (Oxford, England), 45(6), 857–866. https://doi.org/10.1002/BIOF.1554

Mozafar, M., Kazemian, S., Hoseini, E., Mohammadi, M., Alimoghadam, R., Shafie, M., & Mayeli, M. (2023). The glucocerebrosidase mutations and uric acid levels in Parkinson’s disease: A 3-years investigation of a potential biomarker”. Clinical Parkinsonism and Related Disorders, 8. https://doi.org/10.1016/J.PRDOA.2022.100177

Mucuna Pruriens Shows Neuroprotective Effect by Inhibiting Apoptotic Pathways of Dopaminergic Neurons in the Paraquat Mouse Model of Parkinsonism | Request PDF. (n.d.). Retrieved April 5, 2023, from https://www.researchgate.net/ publication/341817981_MUCUNA_PRURIENS_ SHOWS_NEUROPROTECTIVE_EFFECT_ BY_INHIBITING_APOPTOTIC_PATHWAYS_ OF_DOPAMINERGIC_NEURONS_IN_ THE_PARAQUAT_MOUSE_MODEL_OF_ PARKINSONISM

Nagayama, H., Hamamoto, M., Ueda, M., Nito, C., Yamaguchi, H., & Katayama, Y. (2004). The effect of ascorbic acid on the pharmacokinetics of levodopa in elderly patients with Parkinson disease. Clinical Neuropharmacology, 27(6), 270–273. https://doi. org/10.1097/01.WNF.0000150865.21759.BC

Olanow, C. W., Stern, M. B., & Sethi, K. (2009). The scientific and clinical basis for the treatment of Parkinson disease (2009). Neurology, 72(21 Suppl 4). https://doi.org/10.1212/WNL.0B013E3181A1D44C Ortega-Arellano, H. F., Jimenez-Del-Rio, M., & Velez- Pardo, C. (2013). Dmp53, basket and drICE gene knockdown and polyphenol gallic acid increase life span and locomotor activity in a Drosophila Parkinson’s disease model. Genetics and Molecular Biology, 36(4), 608–615. https://doi.org/10.1590/ S1415-47572013000400020

PANWAR, A. A. N. K. N. S. M. V. A. M. T. S. A. K. M. G.J. S. (2020). PHARMACOLOGICAL ACTIVITIES OF Mucuna pruriens: AN UPDATE. Plant Cell Biotechnology and Molecular Biology, 21(69–70).

Pathania, R., Chawla, P., Khan, H., Kaushik, R., & Khan, M. A. (2020). An assessment of potential nutritive and medicinal properties of Mucuna pruriens: a natural food legume. 3 Biotech, 10(6), 261. https://doi.org/10.1007/S13205-020-02253-X

Poroikov, V. V., Filimonov, D. A., Ihlenfeldt, W. D., Gloriozova, T. A., Lagunin, A. A., Borodina, Y. V., Stepanchikova, A. V., & Nicklaus, M. C. (2003). PASS biological activity spectrum predictions in the enhanced open NCI database browser. Journal of Chemical Information and Computer Sciences, 43(1), 228–236. https://doi.org/10.1021/CI020048R

Quik, M., Parameswaran, N., McCallum, S. E., Bordia, T., Bao, S., McCormack, A., Kim, A., Tyndale, R. F., Langston, J. W., & Di Monte, D. A. (2006). Chronic oral nicotine treatment protects against striatal degeneration in MPTP-treated primates. Journal of Neurochemistry, 98(6), 1866–1875. https://doi.org/10.1111/J.1471-4159.2006.04078.X

Rabiei, Z., Solati, K., & Amini-Khoei, H. (2019). Phytotherapy in treatment of Parkinson’s disease: a review. Pharmaceutical Biology, 57(1), 355–362. https://doi.org/10.1080/13880209.2019.1618344

 

 

Savica, R., Rocca, W. A., & Ahlskog, J. E. (2010). When does Parkinson disease start? Archives of Neurology, 67(7), 798–801. https://doi.org/10.1001/ARCHNEUROL.2010.135

Schapira, A. H. V., Chaudhuri, K. R., & Jenner, P. (2017). Non-motor features of Parkinson disease. Nature Reviews. Neuroscience, 18(7), 435–450. https://doi.org/10.1038/NRN.2017.62

Schommer, J., Marwarha, G., Nagamoto-Combs, K., & Ghribi, O. (2018). Palmitic Acid-Enriched Diet Increases α-Synuclein and Tyrosine Hydroxylase Expression Levels in the Mouse Brain. Frontiers in Neuroscience, 12(AUG). https://doi.org/10.3389/FNINS.2018.00552

Science of Mucuna Pruriens for Treating Parkinson’s | APDA. (n.d.). Retrieved March 30, 2023, from https://www.apdaparkinson.org/article/mucuna- pruriens-for-parkinsons-disease/

Serotonin.     (n.d.).       https://pubchem.ncbi.nlm.nih.gov/ compound/Serotonin

Shimazu, S., & Miklya, I. (2004). Pharmacological studies with        endogenous          enhancer               substances: β-phenylethylamine, tryptamine, and their synthetic derivatives. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 28(3), 421–427. https://doi.org/10.1016/J.PNPBP.2003.11.016

Squalene. (n.d.).

Stearic acid. (n.d.).

Takeda, N. (1994). Serotonin-degradative pathways in the toad (Bufo bufo japonicus) brain: clues to the pharmacological analysis of human psychiatric disorders. Comparative Biochemistry and Physiology. Pharmacology, Toxicology and Endocrinology, 107(2), 275–281. https://doi.org/10.1016/1367-8280(94)90051-5

Tan, N. H., Fung, S. Y., Sim, S. M., Marinello, E., Guerranti, R., & Aguiyi, J. C. (2009). The protective effect of Mucuna pruriens seeds against snake venom poisoning. Journal of Ethnopharmacology, 123(2), 356–358. https://doi.org/10.1016/J.JEP.2009.03.025

Tavares, R. L., de Vasconcelos, M. H. A., Dutra, M. L. da V., D’oliveira, A. B., Lima, M. D. S., Salvadori, M. G. da S. S., Pereira, R. de A., Alves, A. F., Nascimento, Y. M. Do, Tavares, J. F., Guzman-Quevedo, O., & Aquino, J. de S. (2020). Mucuna pruriens Administration Minimizes Neuroinflammation and Shows Anxiolytic, Antidepressant and Slimming Effects in Obese Rats. Molecules, 25(23), 5559. https://doi.org/10.3390/MOLECULES25235559

Tolosa, E., Vila, M., Klein, C., & Rascol, O. (2020). LRRK2 in Parkinson disease: challenges of clinical trials. Nature Reviews Neurology 2020 16:2, 16(2), 97–107. https://doi.org/10.1038/s41582-019-0301-2 Ubaid, S., Rumman, M., Singh, B., Akhtar, M. S.,

Mahdi, A. A., & Pandey, S. (2020). Elucidating the Neuroprotective Role of Formulated Camel α-Lactalbumin-Oleic Acid Complex by Curating the SIRT1 Pathway in Parkinson’s Disease Model. ACS Chemical Neuroscience, 11(24), 4416–4425. https:// doi.org/10.1021/ACSCHEMNEURO.0C00639

Voon, P. T., Ng, T. K. W., Lee, V. K. M., & Nesaretnam, K. (2011). Diets high in palmitic acid (16:0), lauric and myristic acids (12:0 + 14:0), or oleic acid (18:1) do not alter postprandial or fasting plasma homocysteine and inflammatory markers in healthy Malaysian adults. The American Journal of Clinical Nutrition, 94(6), 1451– 1457. https://doi.org/10.3945/AJCN.111.020107

Wang, R., Sun, H., Wang, G., & Ren, H. (2020). Imbalance of Lysine Acetylation Contributes to the Pathogenesis of Parkinson’s Disease. International Journal of Molecular Sciences, 21(19), 1–22. https://doi.org/10.3390/IJMS21197182

 

 

 

Youdim, K. A., Martin, A., & Joseph, J. A. (2000). Essential fatty acids and the brain: possible health implications. International Journal of Developmental Neuroscience: The Official Journal of the International Society for Developmental Neuroscience, 18(4–5), 383–399. https://doi.org/10.1016/S0736-5748(00)00013-7

How to Cite

Sakshi Sharma, Navneet Khurana, Vikas Sharma, Soumik Chaudhury, Samriti, Talluri Sriram and Neha Sharma. Prediction of the Anti-Parkinson’s Effect of Phytoconstituents from Mucuna Pruriens with the use of Prediction of Activities Spectra of Substances Software. J. Pharm. Technol. Res. Manag.. 2022, 10, 181-199
Prediction of the Anti-Parkinson’s Effect of Phytoconstituents from Mucuna Pruriens with the use of Prediction of Activities Spectra of Substances Software

Current Issue

PeriodicityBiannually
Issue-1May
Issue-2November
ISSN Print2321-2217
ISSN Online2321-2225
RNI No.CHAENG/2013/50088
OA Policy

Publisher's policy of the journal at Sherpa UK for the submitted, accepted, and published articles. Click OAPolicy

Plan-S Compliance

To check compliance, one has to use the Journal Check Tool (JCT). This tool provided by cOAlition S (European funders) for the researchers (fundee) to check the compliance with the journal.

Recommend journal to your library

You can recommend the journal being a researcher or faculty member to your library. We will post a copy of the Journal to your library on your behalf at free of cost.
Click here: Recommend Journal

Preprint Arxiv Submission

The authors are encouraged to submit the author’s copy (preprint) to appropriate preprint archives e.g. https://arxiv.org and/or on https://indiarxiv.org or institutional repositories (e.g., D Space) before paper acceptance by the editor of Journal. After publications of the paper author(s) should mention the citation information, title and abstract along with DOI number of the publication carefully on the required page of the depository(ies).

Contact: Phone: +91-172-2741000, +91-172-4691800

Email : editor.jptrm@chitkara.edu.in;

Abstract and Indexing

Information

This work is licensed under a Creative Commons Attribution 4.0 International License.

Articles in Journal of Pharmaceutical Technology, Research and Management (J. Pharm. Tech. Res. Management) by Chitkara University Publications are Open Access articles that are published with licensed under a Creative Commons Attribution- CC-BY 4.0 International License. Based on a work at https://jptrm.chitkara.edu.in/. This license permits one to use, remix, tweak and reproduction in any medium, even commercially provided one give credit for the original creation.

View Legal Code of the above-mentioned license, https://creativecommons.org/licenses/by/4.0/legalcode

View Licence Deed here https://creativecommons.org/licenses/by/4.0/

Creative Commons License

Journal of Pharmaceutical Technology, Research and Management by Chitkara University Publications is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at https://jptrm.chitkara.edu.in//

Members