Prediction of the Anti-Parkinson’s Effect of Phytoconstituents from Mucuna Pruriens with the use of Prediction of Activities Spectra of Substances Software

Abstract

Mucuna pruriens Linn is the most popular plant which has been used for a long time for treating many diseases. The plants shows wide pharmacological activities like antidiabetic, antineoplastic, antiepileptic, aphrodisiac, antimicrobial activities etc. It has wide use in the treatment of the Parkinson’s disease. The rationale behind this study is to discover the maximum activities over the selected phytoconstituent of the plant Mucuna pruriens which can be used in Parkinson’s disease. With the help of Prediction of activities spectra of substances (PASS) software activities which are useful in the management of Parkinson’s disease can be recognized. The mol file of the compounds was downloaded from Pubchem and the activity of the various compounds was speculated in the PASS software. From the data we have noted the Pa values of the compounds and the related activities of the compounds then we have predicted the reported activities of the compounds and from the table and graph we have observed the higher and lowest value of the compounds showing different activities and also observed which are the compounds which does not show the activities.

  • Page Number : 181-199
  • Published Date : 2022-11-10
  • Keywords
    Parkinson’s disease, Levodopa, Prediction of activities spectra of substances software
  • DOI Number
    10.15415/jptrm.2022.102008
  • Authors
    • Sakshi Sharma
    • Navneet Khurana
    • Vikas Sharma
    • Soumik Chaudhury
    • Samriti, Talluri Sriram
    • Neha Sharma

References

  • (PDF) In Vitro evaluation of the antibacterial activity of Mucuna pruriens leaf and callus extracts. (n.d.). Retrieved April 5, 2023, from http://www.researchgate.net/publication/263311975_In_Vitro_evaluation_of_the_antibacterial_activity_of_Mucuna_pruriens_leaf_ and_callus_extracts
  • (PDF) Phytochemistry and pharmacological activity of Mucuna pruriens: A review. (n.d.). Retrieved April 5, 2023, from https://www.researchgate.net/publication/317304163_Phytochemistry_and_ pharmacological_activity_of_Mucuna_pruriens_A_review
  • (PDF) Review on “Mucuna” - The wonder plant. (n.d.). Retrieved April 5, 2023, from https://www.researchgate.net/publication/287916753_Review_ on_Mucuna_-_The_wonder_plant5-Hydroxy tryptophan. (n.d.).
  • Antonini, A., Poewe, W., Chaudhuri, K. R., Jech, R., Pickut, B., Pirto Sek G, Z., Szasz, J., Valldeoriola, F., Winkler, C., Bergmann, L., Yegin, A., Onuk, K., & Barch, D. (2017). Levodopa-carbidopa intestinal gel in advanced Parkinson’s: Final results of the GLORIA registry. Parkinsonism and Related Disorders, 45, 13–20. https://doi.org/10.1016/j.parkreldis.2017.09.018
  • Armstrong, M. J., & Okun, M. S. (2020). Diagnosis and Treatment of Parkinson Disease: A Review. JAMA, 323(6), 548–560. https://doi.org/10.1001/JAMA.2019.22360
  • Badhani, B., Sharma, N., & Kakkar, R. (2015). Gallic acid: a versatile antioxidant with promising therapeutic and industrial applications. RSC Advances, 5(35), 27540–27557. https://doi.org/10.1039/C5RA01911G
  • Bajracharya, R., Bustamante, S., & Ballard, J. W. O. (2019). Stearic Acid Supplementation in High Protein to Carbohydrate (P:C) Ratio Diet Improves Physiological and Mitochondrial Functions of Drosophila melanogaster parkin Null Mutants. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 74(10), 1564–1572. https://doi.org/10.1093/GERONA/GLX246
  • Bufotenin oxide | C12H16N2O2 - PubChem. (n.d.). Retrieved April 5, 2023, from https://pubchem.ncbi. nlm.nih.gov/compound/Bufotenin-oxide
  • Calzetti, S., & Negrotti, A. (2023). Permanent non- progressive cinnarizine and flunarizine-induced parkinsonism: An under-recognized tardive syndrome in the elderly? Journal of the Neurological Sciences, 444, 120526. https://doi.org/10.1016/J.JNS.2022.120526
  • Charleston, S. S., & Clegg, K. M. (1972). ASCORBIC ACID AND THE COMMON COLD. The Lancet, 299(7765), 1401–1402. https://doi.org/10.1016/S0140-6736(72)91143-9
  • Farnsworth, N. R., Akerele, O., Bingel, A. S., Soejarto, D. D., & Guo, Z. (1985). Medicinal plants in therapy. Bulletin of the World Health Organization, 63(6), 965. https://doi.org/10.1016/0378-8741(87)90016-x
  • High Levels of Levodopa Found in Mucuna Pruriens Supplements | Mucuna Pruriens Supplements May Lead to Excess Levodopa in Patients | Parkinson’s News Today. (n.d.). Retrieved March 30, 2023, from https:// parkinsonsnewstoday.com/news/high-levels-levodopa- found-mucuna-pruriens-supplements/
  • Iderberg, H., McCreary, A. C., Varney, M. A., Cenci, M. A., & Newman-Tancredi, A. (2015). Activity of serotonin 5-HT(1A) receptor “biased agonists” in rat models of Parkinson’s disease and L-DOPA-induced dyskinesia. Neuropharmacology, 93, 52–67. https:// doi.org/10.1016/J.NEUROPHARM.2015.01.012
  • Ishikawa, S., Taira, T., Niki, T., Takahashi-Niki, K., Maita, C., Maita, H., Ariga, H., & Iguchi-Ariga, S. M. M. (2009). Oxidative status of DJ-1-dependent activation of dopamine synthesis through interaction of tyrosine hydroxylase  and 4-dihydroxy-L-phenylalanine (L-DOPA) decarboxylase with DJ-1. The Journal of Biological Chemistry, 284(42), 8832–28844. https://doi.org/10.1074/JBC.M109.019950
  • James, E., Keppler, J., L Robertshaw, T., & Sessa, B. (2022).             N,N-dimethyltryptamine and Amazonian ayahuasca plant medicine. Human Psychopharmacology: Clinical and Experimental, 37(3), e2835. https://doi.org/10.1002/HUP.2835
  • Johnson, G. H., & Fritsche, K. (2012). Effect of dietary linoleic acid on markers of inflammation in healthy persons: a systematic review of randomized controlled trials. Journal of the Academy of Nutrition and Dietetics, 112(7). https://doi.org/10.1016/J.JAND.2012.03.029
  • Kabuto, H., Yamanushi, T. T., Janjua, N., Takayama, F., & Mankura, M. (2013). Effects of squalene/squalane on dopamine levels, antioxidant enzyme activity, and fatty acid composition in the striatum of Parkinson’s disease mouse model. Journal of Oleo Science, 62(1), 21–28. https://doi.org/10.5650/JOS.62.21
  • Katzenschlager, R., & Lees, A. J. (2002). Treatment of Parkinson’s disease: levodopa as the first choice. Journal of Neurology, 249 Suppl 2(2). https://doi.org/10.1007/S00415-002-1204-4
  • Katzenshlager, R., Evans, A., Manson, A., Palsalos, P. N., Ratnaraj, N., Watt, H., Timmermann, L., Van Der Giessen, R., & Lees, A. J. (2004). Mucuna pruriens in Parkinson’s disease: a double blind clinical and pharmacological study. Journal of Neurology, Neurosurgery & Psychiatry, 75(12), 1672–1677. https://doi.org/10.1136/JNNP.2003.028761
  • Kim, Y. C. (2010). Neuroprotective phenolics in medicinal plants. Archives of Pharmacal Research, 33(10), 1611– 1632. https://doi.org/10.1007/S12272-010-1011-X
  • Kumar, P., & Saha, S. (2013). An updated review on Taxonomy, Phytochemistry, Pharmacology and Toxicology of Macuna Pruriens. Journal of Pharmacognosy and Phytochemistry, 2(1), 306–314. https://www.phytojournal.com/archives/2013. v2.i1.636/an-updated-review-on-taxonomy- phytochemistry-pharmacology-and-toxicology-of- macuna-pruriens
  • Kumar, R., Kumar, R., Anand, A., Sharma, N., & Khurana, N. (2018). Prediction of Anti-Parkinson Potential of Phytoconstituents using Prediction of Activity Spectra of Substances Software. Asian Journal of Pharmaceutical and Clinical Research, 11(Special Issue 2), 48–56. https://doi.org/10.22159/AJPCR.2018.V11S2.28578
  • Lagunin, A., Stepanchikova, A., Filimonov, D., & Poroikov, V. (2000). PASS: prediction of activity spectra for biologically active substances. Bioinformatics, 16(8), 747–748. https://doi.org/10.1093/ BIOINFORMATICS/16.8.747
  • Lampariello, L., Cortelazzo, A., Guerranti, R., Sticozzi, C., & Valacchi, G. (2012). The Magic Velvet Bean of Mucuna pruriens. Journal of Traditional and Complementary Medicine, 2(4), 331. https://doi.org/10.1016/S2225-4110(16)30119-5
  • Lanoue, A. C., Dumitriu, A., Myers, R. H., & Soghomonian, J. J. (2010). Decreased glutamic acid decarboxylase mRNA expression in prefrontal cortex in Parkinson’s disease. Experimental Neurology, 226(1), 207. https:/doi.org/10.1016/J.EXPNEUROL.2010.09.001
  • Levodopa. (n.d.). https://pubchem.ncbi.nlm.nih.gov/ compound/Levodopa
  • Lopez, S., Bermudez, B., Pacheco, Y. M., Ortega, A., Varela, L. M., Abia, R., & Muriana, F. J. G. (2010). Oleic Acid: The Main Component of Olive Oil on Postprandial Metabolic Processes. Olives and Olive Oil in Health and Disease Prevention, 1385–1393. https:// doi.org/10.1016/B978-0-12-374420-3.00154-6
  • Mack, J. M., Schamne, M. G., Sampaio, T. B., Pértile, R. A. N., Fernandes, P. A. C. M., Markus, R. P., & Prediger, R. D. (2016). Melatoninergic System in Parkinson’s Disease: From Neuroprotection to the Management of Motor and Nonmotor Symptoms. Oxidative Medicine and Cellular Longevity, 2016. https://doi.org/10.1155/2016/3472032
  • Martínez-Banaclocha, M. A. (2012). N-acetyl-cysteine in the treatment of Parkinson’s disease. What are we waiting for? Medical Hypotheses, 79(1), 8–12. https://doi.org/10.1016/J.MEHY.2012.03.021
  • Matsubara, K., Aoyama, K., Suno, M., & Awaya, T. (2002). N-methylation underlying Parkinson’s disease. Neurotoxicology and Teratology, 24(5), 593–598. https://doi.org/10.1016/S0892-0362(02)00212-X
  • Meloni, M., Puligheddu, M., Carta, M., Cannas, A., Figorilli, M., & Defazio, G. (2020). Efficacy and safety of 5-hydroxytryptophan on depression and apathy in Parkinson’s disease: a preliminary finding. European Journal of Neurology, 27(5), 779–786. https://doi.org/10.1111/ENE.14179
  • Metzdorf, J., & Tönges, L. (2021). Short-chain fatty acids in the context of Parkinson’s disease. Neural Regeneration Research, 16(10), 2015. https://doi.org/10.4103/1673-5374.308089
  • Misiura, M., & Miltyk, W. (2019). Proline-containing peptides-New insight and implications: A Review. BioFactors (Oxford, England), 45(6), 857–866. https://doi.org/10.1002/BIOF.1554
  • Mozafar, M., Kazemian, S., Hoseini, E., Mohammadi, M., Alimoghadam, R., Shafie, M., & Mayeli, M. (2023). The glucocerebrosidase mutations and uric acid levels in Parkinson’s disease: A 3-years investigation of a potential biomarker”. Clinical Parkinsonism and Related Disorders, 8. https://doi.org/10.1016/J.PRDOA.2022.100177
  • Mucuna Pruriens Shows Neuroprotective Effect by Inhibiting Apoptotic Pathways of Dopaminergic Neurons in the Paraquat Mouse Model of Parkinsonism | Request PDF. (n.d.). Retrieved April 5, 2023, from https://www.researchgate.netpublication/341817981_MUCUNA_PRURIENS_SHOWS_NEUROPROTECTIVE_EFFECT_ BY_INHIBITING_APOPTOTIC_PATHWAYS_ OF_DOPAMINERGIC_NEURONS_IN_ THE_PARAQUAT_MOUSE_MODEL_OF_ PARKINSONISM
  • Nagayama, H., Hamamoto, M., Ueda, M., Nito, C., Yamaguchi, H., & Katayama, Y. (2004). The effect of ascorbic acid on the pharmacokinetics of levodopa in elderly patients with Parkinson disease. Clinical Neuropharmacology, 27(6), 270–273. https://doi. org/10.1097/01.WNF.0000150865.21759.BC
  • Olanow, C. W., Stern, M. B., & Sethi, K. (2009). The scientific and clinical basis for the treatment of Parkinson disease (2009). Neurology, 72(21 Suppl 4). https://doi.org/10.1212/WNL.0B013E3181A1D44C Ortega-Arellano, H. F., Jimenez-Del-Rio, M., & Velez- Pardo, C. (2013). Dmp53, basket and drICE gene knockdown and polyphenol gallic acid increase life span and locomotor activity in a Drosophila Parkinson’s disease model. Genetics and Molecular Biology, 36(4), 608–615. https://doi.org/10.1590/ S1415-47572013000400020
  • PANWAR, A. A. N. K. N. S. M. V. A. M. T. S. A. K. M. G.J. S. (2020). PHARMACOLOGICAL ACTIVITIES OF Mucuna pruriens: AN UPDATE. Plant Cell Biotechnology and Molecular Biology, 21(69–70).
  • Pathania, R., Chawla, P., Khan, H., Kaushik, R., & Khan, M. A. (2020). An assessment of potential nutritive and medicinal properties of Mucuna pruriens: a natural food legume. 3 Biotech, 10(6), 261. https://doi.org/10.1007/S13205-020-02253-X
  • Poroikov, V. V., Filimonov, D. A., Ihlenfeldt, W. D., Gloriozova, T. A., Lagunin, A. A., Borodina, Y. V., Stepanchikova, A. V., & Nicklaus, M. C. (2003). PASS biological activity spectrum predictions in the enhanced open NCI database browser. Journal of Chemical Information and Computer Sciences, 43(1), 228–236. https://doi.org/10.1021/CI020048R
  • Quik, M., Parameswaran, N., McCallum, S. E., Bordia, T., Bao, S., McCormack, A., Kim, A., Tyndale, R. F., Langston, J. W., & Di Monte, D. A. (2006). Chronic oral nicotine treatment protects against striatal degeneration in MPTP-treated primates. Journal of Neurochemistry, 98(6), 1866–1875. https://doi.org/10.1111/J.1471-4159.2006.04078.X
  • Rabiei, Z., Solati, K., & Amini-Khoei, H. (2019). Phytotherapy in treatment of Parkinson’s disease: a review. Pharmaceutical Biology, 57(1), 355–362. https://doi.org/10.1080/13880209.2019.1618344
  • Savica, R., Rocca, W. A., & Ahlskog, J. E. (2010). When does Parkinson disease start? Archives of Neurology, 67(7), 798–801. https://doi.org/10.1001/ARCHNEUROL.2010.135
  • Schapira, A. H. V., Chaudhuri, K. R., & Jenner, P. (2017). Non-motor features of Parkinson disease. Nature Reviews. Neuroscience, 18(7), 435–450. https://doi.org/10.1038/NRN.2017.62
  • Schommer, J., Marwarha, G., Nagamoto-Combs, K., & Ghribi, O. (2018). Palmitic Acid-Enriched Diet Increases α-Synuclein and Tyrosine Hydroxylase Expression Levels in the Mouse Brain. Frontiers in Neuroscience, 12(AUG). https://doi.org/10.3389/FNINS.2018.00552
  • Science of Mucuna Pruriens for Treating Parkinson’s | APDA. (n.d.). Retrieved March 30, 2023, from https://www.apdaparkinson.org/article/mucuna- pruriens-for-parkinsons-disease/
  • Serotonin.     (n.d.).       https://pubchem.ncbi.nlm.nih.gov/ compound/Serotonin
  • Shimazu, S., & Miklya, I. (2004). Pharmacological studies with endogenous  enhancer substances: β-phenylethylamine, tryptamine, and their synthetic derivatives. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 28(3), 421–427. https://doi.org/10.1016/J.PNPBP.2003.11.016 Squalene. (n.d.). Stearic acid. (n.d.).
  • Takeda, N. (1994). Serotonin-degradative pathways in the toad (Bufo bufo japonicus) brain: clues to the pharmacological analysis of human psychiatric disorders. Comparative Biochemistry and Physiology. Pharmacology, Toxicology and Endocrinology, 107(2), 275–281. https://doi.org/10.1016/1367-8280(94)90051-5
  • Tan, N. H., Fung, S. Y., Sim, S. M., Marinello, E., Guerranti, R., & Aguiyi, J. C. (2009). The protective effect of Mucuna pruriens seeds against snake venom poisoning. Journal of Ethnopharmacology, 123(2), 356–358. https://doi.org/10.1016/J.JEP.2009.03.025
  • Tavares, R. L., de Vasconcelos, M. H. A., Dutra, M. L. da V., D’oliveira, A. B., Lima, M. D. S., Salvadori, M. G. da S. S., Pereira, R. de A., Alves, A. F., Nascimento, Y. M. Do, Tavares, J. F., Guzman-Quevedo, O., & Aquino, J. de S. (2020). Mucuna pruriens Administration Minimizes Neuroinflammation and Shows Anxiolytic, Antidepressant and Slimming Effects in Obese Rats. Molecules, 25(23), 5559. https://doi.org/10.3390/MOLECULES25235559
  • Tolosa, E., Vila, M., Klein, C., & Rascol, O. (2020). LRRK2 in Parkinson disease: challenges of clinical trials. Nature Reviews Neurology 2020 16:2, 16(2), 97–107. https://doi.org/10.1038/s41582-019-0301-2 Ubaid, S., Rumman, M., Singh, B., Akhtar, M. S.,
  • Mahdi, A. A., & Pandey, S. (2020). Elucidating the Neuroprotective Role of Formulated Camel α-Lactalbumin-Oleic Acid Complex by Curating the SIRT1 Pathway in Parkinson’s Disease Model. ACS Chemical Neuroscience, 11(24), 4416–4425. https:// doi.org/10.1021/ACSCHEMNEURO.0C00639
  • Voon, P. T., Ng, T. K. W., Lee, V. K. M., & Nesaretnam, K. (2011). Diets high in palmitic acid (16:0), lauric and myristic acids (12:0 + 14:0), or oleic acid (18:1) do not alter postprandial or fasting plasma homocysteine and inflammatory markers in healthy Malaysian adults. The American Journal of Clinical Nutrition, 94(6), 1451– 1457. https://doi.org/10.3945/AJCN.111.020107
  • Wang, R., Sun, H., Wang, G., & Ren, H. (2020). Imbalance of Lysine Acetylation Contributes to the Pathogenesis of Parkinson’s Disease. International Journal of Molecular Sciences, 21(19), 1–22. https://doi.org/10.3390/IJMS21197182
  • Youdim, K. A., Martin, A., & Joseph, J. A. (2000). Essential fatty acids and the brain: possible health implications. International Journal of Developmental Neuroscience: The Official Journal of the International Society for Developmental Neuroscience, 18(4–5), 383–399. https://doi.org/10.1016/S0736-5748(00)00013-7