Chemical Induced Rodent Model of Autism Spectrum Disorders

Published: November 10, 2022

Authors

  • Kavita Chauhan
  • Veerta Sharma
  • Heena Khan
  • Amarjot Kaur
  • Thakur Gurjeet Singh
Keywords
Animal models, VPA, BPA, THIM, Autism

Abstract

The term Autism spectrum disorder (ASD) refers to a neuro-developmental disorder that include repetitive behaviours, extremely constrained interests and deficits in social communication. In the last ten years, the numerous epidemiological papers discussing connection between autism and environmental chemical exposures has significantly increased. These findings are crucial because they focus on modifiable risk factors that may open up new possibilities for the primary prevention of the autism-related disability, which is now recognised to be more strongly related to environmental factors than was previously thought. A variety of environmental factors have been known as significant factors relevant to aetiology of ASD, such as lead and mercury (heavy metals), PCB(organic contaminant) and phthalates and BPA. The most accurate animal model of autism among all other models is valproic acid-induced autism, which can reproduce almost all of the molecular and cellular changes seen in humans with ASD. This review provide insight into various diagnostic available for autism, pathophysiology of autism and animal model of autism to develop a pharmacological therapeutic intervention for the treatment of disease.

References

Amaral, D.G., Schumann, C.M. and Nordahl, C.W., 2008. Neuroanatomy of autism. Trends in neurosciences31(3), pp.137-145. https://doi.org/10.1016/j.tins.2007.12.005

Baird, G., Cass, H., & Slonims, V. (2003). Diagnosis of autism. Bmj327(7413), 488-493.

Choi, J., Lee, S., Won, J., Jin, Y., Hong, Y., Hur, T.Y., Kim, J.H., Lee, S.R. and Hong, Y., 2018. Pathophysiological and neurobehavioral characteristics of a propionic acid-mediated autism-like rat model. PloS one13(2), p.e0192925. https://doi.org/10.1371/journal.pone.0192925

De Giambattista, C., Ventura, P., Trerotoli, P., Margari, F. and Margari, L., 2021. Sex Differences in Autism Spectrum Disorder: Focus on High Functioning Children and Adolescents. Frontiers in psychiatry12, p.1063. https://doi.org/10.3389/fpsyt.2021.539835

Durak, O., Gao, F., Kaeser-Woo, Y.J., Rueda, R., Martorell, A.J., Nott, A., Liu, C.Y., Watson, L.A. and Tsai, L.H., 2016. Chd8 mediates cortical neurogenesis via transcriptional regulation of cell cycle and Wnt signaling. Nature neuroscience19(11), pp.1477-1488. https://doi.org/10.1038/nn.4400

Freitag, C.M., 2007. The genetics of autistic disorders and its clinical relevance: a review of the literature. Molecular psychiatry12(1), pp.2-22. https://doi.org/10.1038/sj.mp.4001896

Gogolla, N., LeBlanc, J.J., Quast, K.B., Südhof, T.C., Fagiolini, M. and Hensch, T.K., 2009. Common circuit defect of excitatory-inhibitory balance in mouse models of autism. Journal of neurodevelopmental disorders1(2), pp.172-181. https://doi.org/10.1007/s11689-009-9023-x

Hodges, H., Fealko, C. and Soares, N., 2020. Autism spectrum disorder: definition, epidemiology, causes, and clinical evaluation. Translational pediatrics9(Suppl 1), p.S55. https://doi.org/10.21037/tp.2019.09.09

Hurley, A.M., Tadrous, M. and Miller, E.S., 2010. Thimerosal-containing vaccines and autism: a review of recent epidemiologic studies. The Journal of Pediatric Pharmacology and Therapeutics15(3), pp.173-181. https://doi.org/10.5863/1551-6776-15.3.173

Iossifov, I., O’roak, B.J., Sanders, S.J., Ronemus, M., Krumm, N., Levy, D., Stessman, H.A., Witherspoon, K.T., Vives, L., Patterson, K.E. and Smith, J.D., 2014. The contribution of denovo coding mutations to autism spectrum disorder. Nature515(7526), pp.216-221. https://doi.org/10.1038/nature13908

Jacot-Descombes, S., Uppal, N., Wicinski, B., Santos, M., Schmeidler, J., Giannakopoulos, P., Heinsein, H., Schmitz, C. and Hof, P.R., 2012. Decreased pyramidal neuron size in Brodmann areas 44 and 45 in patients with autism. Acta neuropathologica124(1), pp.67-79.

Kim, K., Son, T. G., Park, H. R., Kim, S. J., Kim, H. S., Kim, H. S., … & Lee, J. (2009). Potencies of bisphenol A on the neuronal differentiation and hippocampal neurogenesis. Journal of Toxicology and Environmental Health, Part A72(21-22), 1343-1351.

Leekam, S. R., Libby, S. J., Wing, L., Gould, J., & Taylor, C. (2002). The Diagnostic Interview for Social and Communication Disorders: algorithms for ICD‐10 childhood autism and Wing and Gould autistic spectrum disorder. Journal of Child Psychology and Psychiatry43(3), 327-342. https://doi.org/10.1111/1469-7610.00024

Lord, C., Elsabbagh, M., Baird, G. and Veenstra-Vanderweele, J., 2018. Autism spectrum disorder. The lancet392(10146), pp.508-520. https://doi.org/10.1016/S0140-6736(18)31129-2

Mabunga, D.F.N., Gonzales, E.L.T., Kim, J.W., Kim, K.C. and Shin, C.Y., 2015. Exploring the validity of valproic acid animal model of autism. Experimental neurobiology24(4), p.285. https://doi.org/10.5607/en.2015.24.4.285

MacFabe, D. F., Cain, N. E., Boon, F., Ossenkopp, K. P., & Cain, D. P. (2011). Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: relevance to autism spectrum disorder. Behavioural brain research217(1), 47-54. https://doi.org/10.1016/j.bbr.2010.10.005

Markram, K., Rinaldi, T., Mendola, D. L., Sandi, C., & Markram, H. (2008). Abnormal fear conditioning and amygdala processing in an animal model of autism. Neuropsychopharmacology33(4), 901-912. https://doi.org/10.1038/sj.npp.1301453

Matson, J.L., Wilkins, J., Boisjoli, J.A. and Smith, K.R., 2008. The validity of the autism spectrum disorders-diagnosis for intellectually disabled adults (ASD-DA). Research in developmental disabilities29(6), pp.537-546. https://doi.org/10.1016/j.ridd.2007.09.006

Mustieles, V., Pérez-Lobato, R., Olea, N. and Fernández, M.F., 2015. Bisphenol A: Human exposure and neurobehavior. Neurotoxicology49, pp.174-184. https://doi.org/10.1016/j.neuro.2015.06.002

Namvarpour, Z., Nasehi, M., Amini, A., & Zarrindast, M. R. (2018). Protective role of alpha-lipoic acid in impairments of social and stereotyped behaviors induced by early postnatal administration of thimerosal in male rat. Neurotoxicology and Teratology67, 1-9. https://doi.org/10.1016/j.ntt.2018.02.002

Neal, D., Matson, J.L. and Hattier, M.A., 2014. Validity of the autism spectrum disorder observation for children (ASD-OC). Journal of Mental Health Research in Intellectual Disabilities7(1), pp.14-33. https://doi.org/10.1080/19315864.2012.704490

Nicolini, C. and Fahnestock, M., 2018. The valproic acid-induced rodent model of autism. Experimental neurology299, pp.217-227.  https://doi.org/10.1016/j.expneurol.2017.04.017

Patrick, M.E., Shaw, K.A., Dietz, P.M., Baio, J., Yeargin-Allsopp, M., Bilder, D.A., Kirby, R.S., Hall-Lande, J.A., Harrington, R.A., Lee, L.C. and Lopez, M.L.C., 2021. Prevalence of intellectual disability among eight-year-old children from selected communities in the United States, 2014. Disability and Health Journal14(2), p.101023 https://doi.org/10.1016/j.dhjo.2020.101023

Rebolledo-Solleiro, D., Flores, L.C. and Solleiro-Villavicencio, H., 2021. Impact of BPA on behavior, neurodevelopment and neurodegeneration. Frontiers in bioscience26, pp.363-400. https://doi.org/10.2741/4898

Rossignol, D.A. and Frye, R.E., 2012. Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis. Molecular psychiatry17(3), pp.290-314. https://doi.org/10.1038/mp.2010.136

Sauer, A.K., Stanton, J., Hans, S. and Grabrucker, A., 2021. Autism Spectrum disorders: Etiology and pathology. Exon Publications, pp.1-15. https://doi.org/10.36255/exonpublications.

Schroeder, J.C., Reim, D., Boeckers, T.M. and Schmeisser, M.J., 2015. Genetic animal models for autism spectrum disorder. Social Behavior from Rodents to Humans, pp.311-324. https://doi.org/10.1007/7854_2015_407

Scott, K.E., Schulz, S.E., Moehrle, D., Allman, B.L., Oram Cardy, J.E., Stevenson, R.A. and Schmid, S., 2021. Closing the species gap: translational approaches to studying sensory processing differences relevant for autism spectrum disorder. Autism Research14(7), pp.1322-1331.  https://doi.org/10.1002/aur.2533

Sharma, R., Rahi, S., & Mehan, S. (2019). Neuroprotective potential of solanesol in intracerebroventricular propionic acid induced experimental model of autism: Insights from behavioral and biochemical evidence. Toxicology reports6, 1164-1175.

Shultz, S.R. and MacFabe, D.F., 2014. Propionic acid animal model of autism. Comprehensive guide to autism, pp.1755-78.

Singha, S. P., Memon, S., Bano, U., Isaac, A. D., & Shahani, M. Y. (2022). Evaluation of p21 expression and related autism‐like behavior in Bisphenol‐A exposed offspring of Wistar albino rats. Birth Defects Research. https://doi.org/10.1002/bdr2.2022

Skuse, D Warrington, R., Bishop, D., Chowdhury    U., Lau, J., Mandy, W. and Place, M., 2004. The developmental, dimensional and diagnostic interview (3di): a novel computerized assessment for autism spectrum disorders. JournalB of the American Academy of Child & Adolescent Psychiatry43(5), pp.548-558.  https://doi.org/10.1097/00004583-200405000-00008

Taleb, A., Lin, W., Xu, X., Zhang, G., Zhou, Q.G., Naveed, M., Meng, F., Fukunaga, K. and Han, F., 2021. Emerging mechanisms of valproic acid-induced neurotoxic events in autism and its implications for pharmacological treatment. Biomedicine & Pharmacotherapy137, p.111322.  https://doi.org/10.1016/j.biopha.2021.111322

Thongkorn, S., Kanlayaprasit, S., Jindatip, D., Tencomnao, T., Hu, V.W. and Sarachana, T., 2019. Sex differences in the effects of prenatal bisphenol A exposure on genes associated with autism spectrum disorder in the hippocampus. Scientific reports9(1), pp.1-14.

Varghese, M., Keshav, N., Jacot-Descombes, S., Warda, T., Wicinski, B., Dickstein, D.L., Harony-Nicolas, H., De Rubeis, S., Drapeau, E., Buxbaum, J.D. and Hof, P.R., 2017. Autism spectrum disorder: neuropathology and animal models. Acta neuropathologica134(4), pp.537-566.  https://doi.org/10.1007/s00401-017-1736-4

Watts, T.J., 2008. The pathogenesis of autism. Clinical medicine. Pathology1, pp. CPath-S1143.  https://doi.org/10.4137/cpath.s1143

Wegiel, J., Kuchna, I., Nowicki, K., Imaki, H., Wegiel, J., Marchi, E., Ma, S.Y., Chauhan, A., Chauhan, V., Bobrowicz, T.W. and De Leon, M., 2010. Saint Louis, Ira L. Cohen, Eric London, W. Ted Brown, and Thomas Wisniewski.” The Neuropathology of Autism: Defects of Neurogenesis and Neuronal Migration, and Dysplastic Changes.”. Acta Neuropathologica Acta Neuropathol119, pp.755-70. https://doi.org/10.1007/s00401-010-0655-4

How to Cite

Kavita Chauhan, Veerta Sharma, Heena Khan, Amarjot Kaur and Thakur Gurjeet Singh. Chemical Induced Rodent Model of Autism Spectrum Disorders. J. Pharm. Technol. Res. Manag.. 2022, 10, 133-139
Chemical Induced Rodent Model of Autism Spectrum Disorders

Current Issue

PeriodicityBiannually
Issue-1May
Issue-2November
ISSN Print2321-2217
ISSN Online2321-2225
RNI No.CHAENG/2013/50088
OA Policy

Publisher's policy of the journal at Sherpa UK for the submitted, accepted, and published articles. Click OAPolicy

Plan-S Compliance

To check compliance, one has to use the Journal Check Tool (JCT). This tool provided by cOAlition S (European funders) for the researchers (fundee) to check the compliance with the journal.

Recommend journal to your library

You can recommend the journal being a researcher or faculty member to your library. We will post a copy of the Journal to your library on your behalf at free of cost.
Click here: Recommend Journal

Preprint Arxiv Submission

The authors are encouraged to submit the author’s copy (preprint) to appropriate preprint archives e.g. https://arxiv.org and/or on https://indiarxiv.org or institutional repositories (e.g., D Space) before paper acceptance by the editor of Journal. After publications of the paper author(s) should mention the citation information, title and abstract along with DOI number of the publication carefully on the required page of the depository(ies).

Contact: Phone: +91-172-2741000, +91-172-4691800

Email : editor.jptrm@chitkara.edu.in;

Abstract and Indexing

Information

This work is licensed under a Creative Commons Attribution 4.0 International License.

Articles in Journal of Pharmaceutical Technology, Research and Management (J. Pharm. Tech. Res. Management) by Chitkara University Publications are Open Access articles that are published with licensed under a Creative Commons Attribution- CC-BY 4.0 International License. Based on a work at https://jptrm.chitkara.edu.in/. This license permits one to use, remix, tweak and reproduction in any medium, even commercially provided one give credit for the original creation.

View Legal Code of the above-mentioned license, https://creativecommons.org/licenses/by/4.0/legalcode

View Licence Deed here https://creativecommons.org/licenses/by/4.0/

Creative Commons License

Journal of Pharmaceutical Technology, Research and Management by Chitkara University Publications is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at https://jptrm.chitkara.edu.in//

Members