Chemical Induced Rodent Model of Autism Spectrum Disorders

Abstract

The term Autism spectrum disorder (ASD) refers to a neuro-developmental disorder that include repetitive behaviours, extremely constrained interests and deficits in social communication. In the last ten years, the numerous epidemiological papers discussing connection between autism and environmental chemical exposures has significantly increased. These findings are crucial because they focus on modifiable risk factors that may open up new possibilities for the primary prevention of the autism-related disability, which is now recognised to be more strongly related to environmental factors than was previously thought. A variety of environmental factors have been known as significant factors relevant to aetiology of ASD, such as lead and mercury (heavy metals), PCB(organic contaminant) and phthalates and BPA. The most accurate animal model of autism among all other models is valproic acid-induced autism, which can reproduce almost all of the molecular and cellular changes seen in humans with ASD. This review provide insight into various diagnostic available for autism, pathophysiology of autism and animal model of autism to develop a pharmacological therapeutic intervention for the treatment of disease.

  • Page Number : 133-139
  • Published Date : 2022-11-10
  • Keywords
    Animal models, VPA, BPA, THIM, Autism
  • DOI Number
    10.15415/jptrm.2022.102003
  • Authors
    • Kavita Chauhan
    • Veerta Sharma
    • Heena Khan
    • Amarjot Kaur
    • Thakur Gurjeet Singh

References

  • Amaral, D.G., Schumann, C.M. and Nordahl, C.W., 2008. Neuroanatomy of autism. Trends in neurosciences31(3), pp.137-145. https://doi.org/10.1016/j.tins.2007.12.005
  • Baird, G., Cass, H., & Slonims, V. (2003). Diagnosis of autism. Bmj327(7413), 488-493.
  • Choi, J., Lee, S., Won, J., Jin, Y., Hong, Y., Hur, T.Y., Kim, J.H., Lee, S.R. and Hong, Y., 2018. Pathophysiological and neurobehavioral characteristics of a propionic acid-mediated autism-like rat model. PloS one13(2), p.e0192925. https://doi.org/10.1371/journal.pone.0192925
  • De Giambattista, C., Ventura, P., Trerotoli, P., Margari, F. and Margari, L., 2021. Sex Differences in Autism Spectrum Disorder: Focus on High Functioning Children and Adolescents. Frontiers in psychiatry12, p.1063. https://doi.org/10.3389/fpsyt.2021.539835
  • Durak, O., Gao, F., Kaeser-Woo, Y.J., Rueda, R., Martorell, A.J., Nott, A., Liu, C.Y., Watson, L.A. and Tsai, L.H., 2016. Chd8 mediates cortical neurogenesis via transcriptional regulation of cell cycle and Wnt signaling. Nature neuroscience19(11), pp.1477-1488. https://doi.org/10.1038/nn.4400
  • Freitag, C.M., 2007. The genetics of autistic disorders and its clinical relevance: a review of the literature. Molecular psychiatry12(1), pp.2-22. https://doi.org/10.1038/sj.mp.4001896
  • Gogolla, N., LeBlanc, J.J., Quast, K.B., Südhof, T.C., Fagiolini, M. and Hensch, T.K., 2009. Common circuit defect of excitatory-inhibitory balance in mouse models of autism. Journal of neurodevelopmental disorders1(2), pp.172-181. https://doi.org/10.1007/s11689-009-9023-x
  • Hodges, H., Fealko, C. and Soares, N., 2020. Autism spectrum disorder: definition, epidemiology, causes, and clinical evaluation. Translational pediatrics9(Suppl 1), p.S55. https://doi.org/10.21037/tp.2019.09.09
  • Hurley, A.M., Tadrous, M. and Miller, E.S., 2010. Thimerosal-containing vaccines and autism: a review of recent epidemiologic studies. The Journal of Pediatric Pharmacology and Therapeutics15(3), pp.173-181. https://doi.org/10.5863/1551-6776-15.3.173
  • Iossifov, I., O’roak, B.J., Sanders, S.J., Ronemus, M., Krumm, N., Levy, D., Stessman, H.A., Witherspoon, K.T., Vives, L., Patterson, K.E. and Smith, J.D., 2014. The contribution of denovo coding mutations to autism spectrum disorder. Nature515(7526), pp.216-221. https://doi.org/10.1038/nature13908
  • Jacot-Descombes, S., Uppal, N., Wicinski, B., Santos, M., Schmeidler, J., Giannakopoulos, P., Heinsein, H., Schmitz, C. and Hof, P.R., 2012. Decreased pyramidal neuron size in Brodmann areas 44 and 45 in patients with autism. Acta neuropathologica124(1), pp.67-79.
  • Kim, K., Son, T. G., Park, H. R., Kim, S. J., Kim, H. S., Kim, H. S., ... & Lee, J. (2009). Potencies of bisphenol A on the neuronal differentiation and hippocampal neurogenesis. Journal of Toxicology and Environmental Health, Part A72(21-22), 1343-1351.
  • Leekam, S. R., Libby, S. J., Wing, L., Gould, J., & Taylor, C. (2002). The Diagnostic Interview for Social and Communication Disorders: algorithms for ICD‐10 childhood autism and Wing and Gould autistic spectrum disorder. Journal of Child Psychology and Psychiatry43(3), 327-342. https://doi.org/10.1111/1469-7610.00024
  • Lord, C., Elsabbagh, M., Baird, G. and Veenstra-Vanderweele, J., 2018. Autism spectrum disorder. The lancet392(10146), pp.508-520. https://doi.org/10.1016/S0140-6736(18)31129-2
  • Mabunga, D.F.N., Gonzales, E.L.T., Kim, J.W., Kim, K.C. and Shin, C.Y., 2015. Exploring the validity of valproic acid animal model of autism. Experimental neurobiology24(4), p.285. https://doi.org/10.5607/en.2015.24.4.285
  • MacFabe, D. F., Cain, N. E., Boon, F., Ossenkopp, K. P., & Cain, D. P. (2011). Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: relevance to autism spectrum disorder. Behavioural brain research217(1), 47-54. https://doi.org/10.1016/j.bbr.2010.10.005
  • Markram, K., Rinaldi, T., Mendola, D. L., Sandi, C., & Markram, H. (2008). Abnormal fear conditioning and amygdala processing in an animal model of autism. Neuropsychopharmacology33(4), 901-912. https://doi.org/10.1038/sj.npp.1301453
  • Matson, J.L., Wilkins, J., Boisjoli, J.A. and Smith, K.R., 2008. The validity of the autism spectrum disorders-diagnosis for intellectually disabled adults (ASD-DA). Research in developmental disabilities29(6), pp.537-546. https://doi.org/10.1016/j.ridd.2007.09.006
  • Mustieles, V., Pérez-Lobato, R., Olea, N. and Fernández, M.F., 2015. Bisphenol A: Human exposure and neurobehavior. Neurotoxicology49, pp.174-184. https://doi.org/10.1016/j.neuro.2015.06.002
  • Namvarpour, Z., Nasehi, M., Amini, A., & Zarrindast, M. R. (2018). Protective role of alpha-lipoic acid in impairments of social and stereotyped behaviors induced by early postnatal administration of thimerosal in male rat. Neurotoxicology and Teratology67, 1-9. https://doi.org/10.1016/j.ntt.2018.02.002
  • Neal, D., Matson, J.L. and Hattier, M.A., 2014. Validity of the autism spectrum disorder observation for children (ASD-OC). Journal of Mental Health Research in Intellectual Disabilities7(1), pp.14-33. https://doi.org/10.1080/19315864.2012.704490
  • Nicolini, C. and Fahnestock, M., 2018. The valproic acid-induced rodent model of autism. Experimental neurology299, pp.217-227.  https://doi.org/10.1016/j.expneurol.2017.04.017
  • Patrick, M.E., Shaw, K.A., Dietz, P.M., Baio, J., Yeargin-Allsopp, M., Bilder, D.A., Kirby, R.S., Hall-Lande, J.A., Harrington, R.A., Lee, L.C. and Lopez, M.L.C., 2021. Prevalence of intellectual disability among eight-year-old children from selected communities in the United States, 2014. Disability and Health Journal14(2), p.101023 https://doi.org/10.1016/j.dhjo.2020.101023
  • Rebolledo-Solleiro, D., Flores, L.C. and Solleiro-Villavicencio, H., 2021. Impact of BPA on behavior, neurodevelopment and neurodegeneration. Frontiers in bioscience26, pp.363-400. https://doi.org/10.2741/4898
  • Rossignol, D.A. and Frye, R.E., 2012. Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis. Molecular psychiatry17(3), pp.290-314. https://doi.org/10.1038/mp.2010.136
  • Sauer, A.K., Stanton, J., Hans, S. and Grabrucker, A., 2021. Autism Spectrum disorders: Etiology and pathology. Exon Publications, pp.1-15. https://doi.org/10.36255/exonpublications.
  • Schroeder, J.C., Reim, D., Boeckers, T.M. and Schmeisser, M.J., 2015. Genetic animal models for autism spectrum disorder. Social Behavior from Rodents to Humans, pp.311-324. https://doi.org/10.1007/7854_2015_407
  • Scott, K.E., Schulz, S.E., Moehrle, D., Allman, B.L., Oram Cardy, J.E., Stevenson, R.A. and Schmid, S., 2021. Closing the species gap: translational approaches to studying sensory processing differences relevant for autism spectrum disorder. Autism Research14(7), pp.1322-1331.  https://doi.org/10.1002/aur.2533
  • Sharma, R., Rahi, S., & Mehan, S. (2019). Neuroprotective potential of solanesol in intracerebroventricular propionic acid induced experimental model of autism: Insights from behavioral and biochemical evidence. Toxicology reports6, 1164-1175.
  • Shultz, S.R. and MacFabe, D.F., 2014. Propionic acid animal model of autism. Comprehensive guide to autism, pp.1755-78.
  • Singha, S. P., Memon, S., Bano, U., Isaac, A. D., & Shahani, M. Y. (2022). Evaluation of p21 expression and related autism‐like behavior in Bisphenol‐A exposed offspring of Wistar albino rats. Birth Defects Research. https://doi.org/10.1002/bdr2.2022
  • Skuse, D Warrington, R., Bishop, D., Chowdhury    U., Lau, J., Mandy, W. and Place, M., 2004. The developmental, dimensional and diagnostic interview (3di): a novel computerized assessment for autism spectrum disorders. JournalB of the American Academy of Child & Adolescent Psychiatry43(5), pp.548-558.  https://doi.org/10.1097/00004583-200405000-00008
  • Taleb, A., Lin, W., Xu, X., Zhang, G., Zhou, Q.G., Naveed, M., Meng, F., Fukunaga, K. and Han, F., 2021. Emerging mechanisms of valproic acid-induced neurotoxic events in autism and its implications for pharmacological treatment. Biomedicine & Pharmacotherapy137, p.111322.  https://doi.org/10.1016/j.biopha.2021.111322
  • Thongkorn, S., Kanlayaprasit, S., Jindatip, D., Tencomnao, T., Hu, V.W. and Sarachana, T., 2019. Sex differences in the effects of prenatal bisphenol A exposure on genes associated with autism spectrum disorder in the hippocampus. Scientific reports9(1), pp.1-14.
  • Varghese, M., Keshav, N., Jacot-Descombes, S., Warda, T., Wicinski, B., Dickstein, D.L., Harony-Nicolas, H., De Rubeis, S., Drapeau, E., Buxbaum, J.D. and Hof, P.R., 2017. Autism spectrum disorder: neuropathology and animal models. Acta neuropathologica134(4), pp.537-566.  https://doi.org/10.1007/s00401-017-1736-4
  • Watts, T.J., 2008. The pathogenesis of autism. Clinical medicine. Pathology1, pp. CPath-S1143.  https://doi.org/10.4137/cpath.s1143
  • Wegiel, J., Kuchna, I., Nowicki, K., Imaki, H., Wegiel, J., Marchi, E., Ma, S.Y., Chauhan, A., Chauhan, V., Bobrowicz, T.W. and De Leon, M., 2010. Saint Louis, Ira L. Cohen, Eric London, W. Ted Brown, and Thomas Wisniewski." The Neuropathology of Autism: Defects of Neurogenesis and Neuronal Migration, and Dysplastic Changes.". Acta Neuropathologica Acta Neuropathol119, pp.755-70. https://doi.org/10.1007/s00401-010-0655-4