Anxiolytic activity of Angiotensin-Receptor-Blocker in Experimental Models of Anxiety in Mice
Home >
2014,
Vol. 2 No. 2 > Anxiolytic activity of Angiotensin-Receptor-Blocker in Experimental Models of Anxiety in Mice
Published: November 30, 2014
Authors
- Syed Rehan HasanASBASAJSM College of Pharmacy, Bela (Ropar)- 140111, Punjab, India
- Manish SinhaASBASAJSM College of Pharmacy, Bela (Ropar)- 140111, Punjab, India
- Nitin BansalASBASAJSM College of Pharmacy, Bela (Ropar)- 140111, Punjab, India
Keywords
Angiotensin, Candesartan, anxiety, immobilization stress, caffeine
Abstract
The present study aimed to explore the role of Angiotensin- Receptor-Blocker in the management of anxiety. Male Swiss albino mice of age 6-8 weeks and weight 25-30 g were used in the present study. Candesartan (Angiotensin receptor blocker) was administered in two doses (1 and 2 mg/kg; i.p.) to mice for 14 successive days regularly. Anxiety was induced in mice by two different methods: (i) exposing the mice to immobilization stress for a period of 6 h daily for 7 consecutive days; (ii) administration of caffeine (25 mg/kg; i.p.) daily for 7 days. Elevated Zero Maze and Open Field Apparatus were used to evaluate the level of anxiety in different groups. After behavioral evaluation, the animals were sacrificed and their brains were used for estimation TBARS, GSH and Nitrite levels in the brain. Administration of Candesartan (1 and 2 mg/kg; i.p) for 14 successive days significantly (p<0.05) reduced anxiety due to immobilization stress and caffeine induced anxiety. Candesartan (1and 2 mg/kg; i.p) treated mice showed an increase (p<0.05) in GSH levels while a decrease (p<0.05) in TBARS and nitrite levels in brain. Thus, candesartan may prove to be a useful remedy for the management of anxiety owing to its neuroprotective and antioxidant activity.
References
- Benicky, J., Sanchez-Lemus, E., Pavel, J., Saavedra, J.M. (2009). Anti-inflammatory effects of angiotensin receptor blockers in the brain and the periphery. Cellular and Molecular Neurobiology, 29, 781-792. doi: 10.1007/s10571-009-9368-4. http://dx.doi.org/10.1007/s10571-009-9368-4
- Braun, A.A., Skelton, M.R., Vorhees, C.V., Williams, M.T. (2011). Comparison of the elevated plus and elevated zero mazes in treated and untreated male Sprague-Dawley rats: Effects of anxiolytic and anxiogenic agents. Pharmacology, Biochemistry & Behavior, 97, 406–415. http://dx.doi.org/10.1016/j.pbb.2010.09.013
- Burroughs, S., French, D. (2007). Depression and anxiety: Role of mitochondria. Current Anaesthesia and Critical Care, 18, 34-41. http://dx.doi.org/10.1016/j.cacc.2007.01.007
- Dhir, A., Padi, S.S.V., Naidu, P.S., Kulkarni, S.K. (2006). Protective effect of naproxen (nonselective COX-inhibitor) or rofecoxib (selective COX-2 inhibitor) on immobilization stressinduced alterations in mice. European Journal of Pharmacology, 535, 192-198. http://dx.doi.org/10.1016/j.ejphar.2006.01.064
- Ellman, G.L. (1959). Tissue sulfhydryl groups. Archives of Biophysics and Biochemistry, 82, 70-77. http://dx.doi.org/10.1016/0003-9861(59)90090-6
- Ferrer, D.B., Reymann, J.M., Tribut, O., Allain, H., Vasar, E., Bourin, M. (2001). Role of dopaminergic and serotonergic systems on behavioral stimulatory effects of low-dose alprazolam and lorazepam. European Neuropsychopharmacology, 11, 41-50. http://dx.doi.org/10.1016/S0924-977X(00)00137-1
- Gabry, K.E., Chrousos, G., Gold, P.W. (2003). The Hypothalamo-Pituitary-Adrenal (HPA) axis: A major mediator of adapytive responses to stress. Neuroimmune Biology, 3, 379-414. http://dx.doi.org/10.1016/S1567-7443(03)80055-8
- Gard, R.P., Haig, S.J., Cambursano, P.T., Warrington, C.A. (2001). Strain differences in the anxiolytic effects of losartan in the mouse. Pharmacology, Biochemistry and Behavior, 69, 34-40. http://dx.doi.org/10.1016/S0091-3057(01)00491-9
- Gelband, C.H., Sumners, C., Lu, D., Raizada, M.K. (1997). Angiotensin receptors and norepinephrine neuromodulation: implications of functional coupling. Regulatory Peptides, 72, 139-145. http://dx.doi.org/10.1016/S0167-0115(97)01050-1
- Green, L.C., Wagner, D.A., Glogowski, J., Skipper, P.L., Wishnok, J.S., Tannenbaum, S.R. (1982). Analysis of Nitrate, Nitrite and [15N] Nitrate in biological fluids. Analytical Biochemistry, 126, 131-138. http://dx.doi.org/10.1016/0003-2697(82)90118-X
- Jain, N.S., Hirani, K., Chopde, C.T. (2005). Reversal of caffeine-induced anxiety by neurosteroid 3-alpha-hydroxy-5-alpha-pregnane-20-one in rats. Neuropharmacology, 48, 627-638. http://dx.doi.org/10.1016/j.neuropharm.2004.11.016
- Janero, D.R. (1990). Malondialdehyde and thiobarbituric acid reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free radical biology & Medicine, 9, 515-540. http://dx.doi.org/10.1016/0891-5849(90)90131-2
- Jenkins, T.A. (2008). Effect of angiotensin-related antihypertensives on brain neurotransmitter levels in rats. Neuroscience letters, 444, 186-189. http://dx.doi.org/10.1016/j.neulet.2008.08.021
- Kulkarni S.K., Dandiya, P.C. (1974). A preliminary report on the action of imipramine and antiparkinsonian agents on the open field behavior of rats. Japan Journal of Pharmacology, 24, 809-10. http://dx.doi.org/10.1254/jjp.24.809
- Liu, N., Wang, L.H., Guo, L.L., Wang, G.Q., Zhou, X.P., Jiang, Y., Shang, J., Murao, K., Chen, J.W., Fu, W.Q., Zhang, G.X. (2013). Chronic restraint stress inhibits hair growth via substance P mediated by reactive oxygen species in mice. PLoS One. 8, e61574. http://dx.doi.org/10.1371/journal.pone.0061574
- Morilak, D.A., Barrera, G., Echevarria, D.J., Garcia, A.S., Hernandez, A., Ma, S., Petre, C.O. (2005). Role of brain norepinephrine in the behavioral response to stress. Progress in NeuroPsychopharmacology & Biological Psychiatry, 29, 1214-1224. http://dx.doi.org/10.1016/j.pnpbp.2005.08.007
- Nunez, M.J., Novio, S., Amigo, G., Garabal, M.F. (2011). The antioxidant potential of alprazolam on the redox status of peripheral blood leukocytes in restraint-stressed mice. Life Sciences, 89, 650-654. http://dx.doi.org/10.1016/j.lfs.2011.07.027
- Nutt, D.J. (1990). The pharmacology of human anxiety. Pharmacology & Therapeutics 47: 233-66. http://dx.doi.org/10.1016/0163-7258(90)90089-K
- Nutt, D.J. (2000). The psychobiology of posttraumatic stress disorder. Journal of Clinical Psychiatry, 61S, 24-29.
- Oh Ki-Wan, Park, K.S., Oh, J.H., Yoo, H.S., Lee, Y.M., Lee, M.K., Hong, J.T. (2010). (-)-Epigallocatechin-3-o-gallate (EGCG) reverses caffeine induced anxiogenic-like effects.
- Neuoscience Letters, 481, 131-134. http://dx.doi.org/10.1016/j.neulet.2010.06.072
- Ohkawa, H., Ohishi, N., Yagi, K. (1979). Assay for lipid peroxides in animal tissues by Thiobarbituric acid reaction. Analytical Biochemistry, 95, 351-358. http://dx.doi.org/10.1016/0003-2697(79)90738-3
- Quirin, M., Pruessner, J.S., Kuhl, J. (2008). HPA system regulation and adult attachment anxiety: Individual differences in reactive and awakening cortisol. Psychoneuroendocrinology, 33, 581-590. http://dx.doi.org/10.1016/j.psyneuen.2008.01.013
- Saavedra, J.M., Ando, H., Armando, I., Baiardi, G., Bregonzio, C., Juorio, A., Macova, M. (2005). Anti-stress and anti-anxiety effects of centrally acting angiotensin II AT1 receptor antagonists. Regulatory Peptides, 128, 227-238. http://dx.doi.org/10.1016/j.regpep.2004.12.015
- Saavedra, J.M., Benicky, J. (2007). Brain and peripheral angiotensin II play a major role in stress. Stress, 10, 185-193. http://dx.doi.org/10.1080/10253890701350735
- Saavedra, J.M., Lemus, E.S., Benicky, J. (2011). Blockade of brain angiotensin II AT1 receptors ameliorates stress, anxiety, brain inflammation and ischemia: Therapeutic implications. Psychoneuroendocinology, 36,1-18. http://dx.doi.org/10.1016/j.psyneuen.2010.10.001
- Sánchez-Lemus, E., Honda, M., Saavedra, J.M. (2012). Angiotensin II AT1 receptor blocker candesartan prevents the fast up-regulation of cerebrocortical benzodiazepine-1 receptors induced by acute inflammatory and restraint stress. Behaviour Brain Research, 232, 84–92. http://dx.doi.org/10.1016/j.bbr.2012.03.041
- Shepherd, J.K., Grewal, S.S., Fletcher, A., Bill, D.J., Dourish, C.T. (1994). Behavioural and pharmacological characterisation of the elevated “zero-maze” as an animal model of anxiety. Psychopharmacology, 11, 656-64.
- Sur, T. K., Bhattacharyya, D. (1997). The effect of panax ginseng and diazepam on brain and hypothalamic 5-hydroxytryptamine during stress. Indian Journal of Pharmacology, 29, 318–321.
- Tanaka, M,, Yoshida, M., Emoto, H., Ishii, H. (2000). Noradrenaline systems in the hypothalamus, amygdala and locus coeruleus are involved in the provocation of anxiety: basic studies. European Journal of Pharmacology, 405, 397-406. http://dx.doi.org/10.1016/S0014-2999(00)00569-0
- Trachootham, D., Lu, W., Ogasawara, M.A., Valle, N.R., Huang, P. Redox Regulation of Cell Survival. (2007). Antioxidant Redox Signal. 10, 1343–1374. http://dx.doi.org/10.1089/ars.2007.1957
- Valdez, G.R., Koob, G.F. (2004). Allostasis and dysregulation of corticotropin-releasing factor and neuropeptide Y systems: implications for the development of alcoholism. Pharmacology Biochemistry and Behavior, 79, 671-689. http://dx.doi.org/10.1016/j.pbb.2004.09.020
- Yin, G., Yan, C., Berk, B.C. (2003). Angiotensin II signaling pathways mediated by tyrosine kinases. The International Journal of Biochemistry & Cell Biology, 35, 780-783. http://dx.doi.org/10.1016/S1357-2725(02)00300-X
How to Cite
Syed Rehan Hasan, Manish Sinha, Nitin Bansal. Anxiolytic activity of Angiotensin-Receptor-Blocker in Experimental Models of Anxiety in Mice.
J. Pharm. Technol. Res. Manag.. 2014, 02, 189-202