Next Generation Probiotics and Postbiotics: Modulating the Gut Brain Axis in Alzheimer’s Disease

Published: November 24, 2025

Authors

Mariyam Hussain and Mohammad Ikram

Keywords
Alzheimer’s disease, Probiotics, Gut-brain axis, Microbiome, Neuroinflammation

Abstract

Background: Alzheimer’s disease is a progressive neurodegenerative condition involving cognitive impairment, amyloid β deposition, inflammation, and oxidative stress. The gut-brain axis plays a crucial role in neurological health, as gut microbiota influence brain function through various mechanisms, including immune, metabolic, and neuronal pathways. Probiotics have been known to modulate gut microbiota and enhance cognitive effects in Alzheimer’s disease for a long time. However, next-generation probiotics and postbiotics present more specific and promising methods to curtail neuroinflammation and amyloid pathology.

Purpose: This review evaluates the potential of next-generation probiotics and postbiotics in Alzheimer’s disease, focusing on their neuroprotective mechanisms, safety, preclinical efficacy, and translational prospects.

Method: We conducted a comprehensive literature search using databases such as PubMed, Google Scholar, and Scopus, focusing on studies published up to 2025. Relevant preclinical and clinical studies were screened, and data on mechanism, efficacy, and translational potential were summarised.

Result: Evidence indicates that next-generation probiotics restore gut microbial equilibrium, decrease pro-inflammatory cytokines, promote mitophagy, and fortify the intestinal and blood-brain barriers. These actions enhance cognition, decrease amyloid and tau pathology, and safeguard neurons. Postbiotics have comparable neuroprotective actions, with additional benefits of stability and ease of standardisation. Challenges to clinical translation include variability in formulation, poor understanding of gut-brain interactions, degradation during passage through the gastrointestinal tract, and interindividual variability in the composition of the microbiome.

Conclusion: Modulation of the gut-brain axis through next-generation probiotics and postbiotics is a promising multi-targeted approach for Alzheimer’s disease, conferring neuroprotection and potentially disease-modifying effects. Future research will include the creation of targeted NGP strains, isolation of neuroactive postbiotic compounds, concurrent use of microbiome-derived therapies with standard treatment of AD, and tailoring interventions according to personalised gut profiles. These strategies can potentially boost cognitive performance, retard disease progression, and enhance quality of life for AD patients.

References

  • 2021 Alzheimer’s disease facts and figures. (2021). Alzheimer’s & Dementia, 17(3), 327–406. https://doi.org/10.1002/alz.12328
  • 2025 Alzheimer’s disease facts and figures. (2025). Alzheimer’s & Dementia, 21(4), e70235. https://doi.org/10.1002/alz.70235
  • Abbas, Z., Ahmad, B., Tong, Y., Zhang, J., Wu, S., Wang, J., Li, Z., Liu, T., Liu, Y., Wei, X., Si, D., & Zhang, R. (2025). Mulberry-derived postbiotics alleviate LPS-induced intestinal inflammation and modulate gut microbiota dysbiosis. Food & Function, 16(11), 4437–4450. https://doi.org/10.1039/D4FO05503A
  • Abdelhamid, M., Jung, C.-G., Zhou, C., Inoue, R., Chen, Y., Sento, Y., Hida, H., & Michikawa, M. (2024). Potential Therapeutic Effects of Bifidobacterium breve MCC1274 on Alzheimer’s Disease Pathologies in AppNL-G-F Mice. Nutrients, 16(4), 538. https://doi.org/10.3390/nu16040538
  • Abdellatief, H. (2024). In vivo evaluation of anti- Alzheimer impact of Asparagus sprengeri and Lactobacillus plantarum. Bulletin of Egyptian Society for Physiological Sciences, 44(3), 121–131. https://doi.org/10.21608/besps.2024.268353.1163
  • Abouelela, M. E., & Helmy, Y. A. (2024). Next-Generation Probiotics as Novel Therapeutics for Improving Human Health: Current Trends and Future Perspectives. Microorganisms, 12(3), 430. https://doi.org/10.3390/microorganisms12030430
  • Agahi, A., Hamidi, G. A., Daneshvar, R., Hamdieh, M., Soheili, M., Alinaghipour, A., Esmaeili Taba, S. M., & Salami, M. (2018). Does Severity of Alzheimer’s Disease Contribute to Its Responsiveness to Modifying Gut Microbiota? A Double Blind Clinical Trial. Frontiers in Neurology, 9, 662. https://doi.org/10.3389/fneur.2018.00662
  • Ahmed, S., Busetti, A., Fotiadou, P., Vincy Jose, N., Reid, S., Georgieva, M., Brown, S., Dunbar, H., Beurket-Ascencio, G., Delday, M. I., Ettorre, A., & Mulder, I. E. (2019). In vitro Characterization of Gut Microbiota-Derived Bacterial Strains With Neuroprotective Properties. Frontiers in Cellular Neuroscience, 13, 402. https://doi.org/10.3389/fncel.2019.00402
  • Ahn, J.S., Kim, S., Han, E.J., Hong, S.T., & Chung, H.J. (2025). Increasing spatial working memory in mice with Akkermansia muciniphila. Communications Biology, 8(1), 546. https://doi.org/10.1038/s42003-025-07975-3
  • Aleman, R. S., & Yadav, A. (2023). Systematic Review of Probiotics and Their Potential for Developing Functional Nondairy Foods. Applied Microbiology, 4(1), 47–69. https://doi.org/10.3390/applmicrobiol4010004
  • Algieri, F., Tanaskovic, N., Rincon, C. C., Notario, E., Braga, D., Pesole, G., Rusconi, R., Penna, G., & Rescigno, M. (2023). Lactobacillus paracasei CNCM I-5220-derived postbiotic protects from the leaky-gut. Frontiers in Microbiology, 14, 1157164. https://doi.org/10.3389/fmicb.2023.1157164
  • Ansari, F., Neshat, M., Pourjafar, H., Jafari, S. M., Samakkhah, S. A., & Mirzakhani, E. (2023). The role of probiotics and prebiotics in modulating of the gut-brain axis. Frontiers in Nutrition, 10. https://doi.org/10.3389/fnut.2023.1173660
  • Anti-Neurodegenerative Activity Of The Probiotic Strain Lactobacillus Acidophilus. (n.d.). ResearchGate. Retrieved October 25, 2025. https://doi.org/10.56936/18290825-3.v18.2024-93
  • Aran, K. R., Porel, P., Hunjan, G., Singh, S., Gupta, G. D., & Rohit. (2025). Postbiotics as a therapeutic tool in Alzheimer’s disease: Insights into molecular pathways and neuroprotective effects. Ageing Research Reviews, 106, 102685. https://doi.org/10.1016/j.arr.2025.102685
  • Asadi, Z., Abbasi, A., Ghaemi, A., Montazeri, E. A., & Akrami, S. (2024). Investigating the properties and antibacterial, antioxidant, and cytotoxicity activity of postbiotics derived from Lacticaseibacillus casei on various gastrointestinal pathogens in vitro and in food models. GMS Hygiene and Infection Control, 19, Doc60. https://doi.org/10.3205/dgkh000515
  • Banks, W. A., & Erickson, M. A. (2010). The blood–brain barrier and immune function and dysfunction. Neurobiology of Disease, 37(1), 26–32. https://doi.org/10.1016/j.nbd.2009.07.031
  • Barefoot, S. F., & Klaenhammer, T. R. (1984). Purification and characterization of the Lactobacillus acidophilus bacteriocin lactacin B. Antimicrobial Agents and Chemotherapy, 26(3), 328–334. https://doi.org/10.1128/aac.26.3.328
  • Bhadoria, P. B. S., & Mahapatra, S. C. (2011). Prospects, Technological Aspects and Limitations of Probiotics – A Worldwide Review. European Journal of Nutrition & Food Safety, 23–42.
  • Bhat, M. I., Kumari, A., Kapila, S., & Kapila, R. (2019). Probiotic lactobacilli mediated changes in global epigenetic signatures of human intestinal epithelial cells during Escherichia coli challenge. Annals of Microbiology, 69(6), 603–612. https://doi.org/10.1007/s13213-019-01451-0
  • Boesmans, L., Valles-Colomer, M., Wang, J., Eeckhaut, V., Falony, G., Ducatelle, R., Van Immerseel, F., Raes, J., & Verbeke, K. (2018). Butyrate Producers as Potential Next-Generation Probiotics: Safety Assessment of the Administration of Butyricicoccus pullicaecorum to Healthy Volunteers. mSystems, 3(6), 10.1128/msystems.00094-18. https://doi.org/10.1128/msystems.00094-18
  • Botin, T., Ramirez-Chamorro, L., Vidic, J., Langella, P., Martin-Verstraete, I., Chatel, J.-M., & Auger, S. (n.d.). The Tolerance of Gut Commensal Faecalibacterium to Oxidative Stress Is Strain Dependent and Relies on Detoxifying Enzymes. Applied and Environmental Microbiology, 89(7), e00606-23. https://doi.org/10.1128/aem.00606-23
  • Chandrasekaran, P., Weiskirchen, S., & Weiskirchen, R. (2024). Effects of Probiotics on Gut Microbiota: An Overview. International Journal of Molecular Sciences, 25(11), 6022. https://doi.org/10.3390/ijms25116022
  • Chang, C.J., Lin, T.L., Tsai, Y.L., Wu, T.R., Lai, W.F., Lu, C.C., & Lai, H.C. (2019). Next generation probiotics in disease amelioration. Journal of Food and Drug Analysis, 27(3), 615–622. https://doi.org/10.1016/j.jfda.2018.12.011
  • Choi, G.-H., Bock, H.J., Lee, N.K., & Paik, H.D. (2022). Soy yogurt using Lactobacillus plantarum 200655 and fructooligosaccharides: Neuroprotective effects against oxidative stress. Journal of Food Science and Technology, 59(12), 4870–4879. https://doi.org/10.1007/s13197-022-05575-1
  • Choi, H. J., Lee, H. L., Kim, I. Y., Ju, Y. H., Heo, Y. M., Na, H. R., Lee, J. Y., Choi, S.-I., & Heo, H. J. (2025). Oral Administration of Lactobacillus gasseri and Lacticaseibacillus rhamnosus Ameliorates Amyloid Beta (Aβ)-Induced Cognitive Impairment by Improving Synaptic Function Through Regulation of TLR4/Akt Pathway. Antioxidants, 14(2), 139. https://doi.org/10.3390/antiox14020139
  • Cleusix, V., Lacroix, C., Vollenweider, S., Duboux, M., & Le Blay, G. (2007). Inhibitory activity spectrum of reuterin produced by Lactobacillus reuteri against intestinal bacteria. BMC Microbiology, 7(1), 101. https://doi.org/10.1186/1471-2180-7-101
  • Cox, L. M., Maghzi, A. H., Liu, S., Tankou, S. K., Dhang, F. H., Willocq, V., Song, A., Wasén, C., Tauhid, S., Chu, R., Anderson, M. C., De Jager, P. L., Polgar-Turcsanyi, M., Healy, B. C., Glanz, B. I., Bakshi, R., Chitnis, T., & Weiner, H. L. (2021). Gut Microbiome in Progressive Multiple Sclerosis. Annals of Neurology, 89(6), 1195–1211. https://doi.org/10.1002/ana.26084
  • Cryan, J. F., O’Riordan, K. J., Cowan, C. S. M., Sandhu, K. V., Bastiaanssen, T. F. S., Boehme, M., Codagnone, M. G., Cussotto, S., Fulling, C., Golubeva, A. V., Guzzetta, K. E., Jaggar, M., Long-Smith, C. M., Lyte, J. M., Martin, J. A., Molinero-Perez, A., Moloney, G., Morelli, E., Morillas, E., … Dinan, T. G. (2019). The Microbiota-Gut-Brain Axis. Physiological Reviews, 99(4), 1877–2013. https://doi.org/10.1152/physrev.00018.2018
  • D’Alessandro, M. C. B., Kanaan, S., Geller, M., Praticò, D., & Daher, J. P. L. (2025). Mitochondrial dysfunction in Alzheimer’s disease. Ageing Research Reviews, 107, 102713. https://doi.org/10.1016/j.arr.2025.102713
  • Di Salvo, C., D’Antongiovanni, V., Benvenuti, L., d’Amati, A., Ippolito, C., Segnani, C., Pierucci, C., Bellini, G., Annese, T., Virgintino, D., Colucci, R., Antonioli, L., Fornai, M., Errede, M., Bernardini, N., & Pellegrini, C. (2024). Lactiplantibacillus plantarum HEAL9 attenuates cognitive impairment and progression of Alzheimer’s disease and related bowel symptoms in SAMP8 mice by modulating microbiota-gut-inflammasome-brain axis. Food & Function, 15(20), 10323–10338. https://doi.org/10.1039/D4FO02075H
  • Doifode, T., Giridharan, V. V., Generoso, J. S., Bhatti, G., Collodel, A., Schulz, P. E., Forlenza, O. V., & Barichello, T. (2021). The impact of the microbiota-gut-brain axis on Alzheimer’s disease pathophysiology. Pharmacological Research, 164, 105314. https://doi.org/10.1016/j.phrs.2020.105314
  • Dolphin, H., Dukelow, T., Finucane, C., Commins, S., McElwaine, P., & Kennelly, S. P. (2022). “The Wandering Nerve Linking Heart and Mind” – The Complementary Role of Transcutaneous Vagus Nerve Stimulation in Modulating Neuro-Cardiovascular and Cognitive Performance. Frontiers in Neuroscience, 16. https://doi.org/10.3389/fnins.2022.897303
  • Dos Santos Picanco, L. C., Ozela, P. F., De Fatima De Brito Brito, M., Pinheiro, A. A., Padilha, E. C., Braga, F. S., De Paula Da Silva, C. H. T., Dos Santos, C. B. R., Rosa, J. M. C., & Da Silva Hage-Melim, L. I. (2018). Alzheimer’s Disease: A Review from the Pathophysiology to Diagnosis, New Perspectives for Pharmacological Treatment. Current Medicinal Chemistry, 25(26), 3141–3159. https://doi.org/10.2174/0929867323666161213101126
  • Elberry, D. A., Gamal, M., Gawish, Z., Hegazy, E. A., Hosny, S. A., Rashed, L. A., Mehesen, M. N., & ShamsEldeen, A. M. (2025). Amelioration of gut dysbiosis-induced cognitive deterioration by repeated administration of human clostridium butyricum: Targeting intestinal and blood–brain barrier. Future Journal of Pharmaceutical Sciences, 11(1), 87. https://doi.org/10.1186/s43094-025-00836-0
  • Erny, D., Hrabě De Angelis, A. L., Jaitin, D., Wieghofer, P., Staszewski, O., David, E., Keren-Shaul, H., Mahlakoiv, T., Jakobshagen, K., Buch, T., Schwierzeck, V., Utermöhlen, O., Chun, E., Garrett, W. S., McCoy, K. D., Diefenbach, A., Staeheli, P., Stecher, B., Amit, I., & Prinz, M. (2015). Host microbiota constantly controls maturation and function of microglia in the CNS. Nature Neuroscience, 18(7), 965–977. https://doi.org/10.1038/nn.4030
  • Faraji, N., Payami, B., Ebadpour, N., & Gorji, A. (2025). Vagus nerve stimulation and gut microbiota interactions: A novel therapeutic avenue for neuropsychiatric disorders. Neuroscience & Biobehavioral Reviews, 169, 105990. https://doi.org/10.1016/j.neubiorev.2024.105990
  • Fung, T. C., Olson, C. A., & Hsiao, E. Y. (2017). Interactions between the microbiota, immune and nervous systems in health and disease. Nature Neuroscience, 20(2), 145–155. https://doi.org/10.1038/nn.4476
  • Gao, Z., Yin, J., Zhang, J., Ward, R. E., Martin, R. J., Lefevre, M., Cefalu, W. T., & Ye, J. (2009). Butyrate Improves Insulin Sensitivity and Increases Energy Expenditure in Mice. Diabetes, 58(7), 1509–1517. https://doi.org/10.2337/db08-1637
  • Giovannini, M. G., Lana, D., Traini, C., & Vannucchi, M. G. (2021). The Microbiota–Gut–Brain Axis and Alzheimer Disease. From Dysbiosis to Neurodegeneration: Focus on the Central Nervous System Glial Cells. Journal of Clinical Medicine, 10(11), 2358. https://doi.org/10.3390/jcm10112358
  • Głowacka, P., Oszajca, K., Pudlarz, A., Szemraj, J., & Witusik-Perkowska, M. (2024). Postbiotics as Molecules Targeting Cellular Events of Aging Brain—The Role in Pathogenesis, Prophylaxis and Treatment of Neurodegenerative Diseases. Nutrients, 16(14), 2244. https://doi.org/10.3390/nu16142244
  • Głowacka, P., Oszajca, K., Pudlarz, A., Szemraj, J., & Witusik-Perkowska, M. (2024). Postbiotics as Molecules Targeting Cellular Events of Aging Brain-The Role in Pathogenesis, Prophylaxis and Treatment of Neurodegenerative Diseases. Nutrients, 16(14), 2244. https://doi.org/10.3390/nu16142244
  • Greer, M. M. Jr. (2000). Inflammation and the pathophysiology of Alzheimer’s disease. Dialogues in Clinical Neuroscience, 2(3), 233–239. https://doi.org/10.31887/DCNS.2000.2.3/mgreer
  • Gul, S., & Durante-Mangoni, E. (2024). Unraveling the Puzzle: Health Benefits of Probiotics—A Comprehensive Review. Journal of Clinical Medicine, 13(5), 1436. https://doi.org/10.3390/jcm13051436
  • Hamdi, A., Lloyd, C., Eri, R., & Van, T. T. H. (2025). Postbiotics: A Promising Approach to Combat Age-Related Diseases. Life, 15(8), 1190. https://doi.org/10.3390/life15081190
  • Harach, T., Marungruang, N., Duthilleul, N., Cheatham, V., Mc Coy, K. D., Frisoni, G., Neher, J. J., Fåk, F., Jucker, M., Lasser, T., & Bolmont, T. (2017). Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Scientific Reports, 7(1), 41802. https://doi.org/10.1038/srep41802
  • Hardingham, G. E., Fukunaga, Y., & Bading, H. (2002). Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nature Neuroscience, 5(5), 405–414. https://doi.org/10.1038/nn835
  • He, X., Yan, C., Zhao, S., Zhao, Y., Huang, R., & Li, Y. (2022). The preventive effects of probiotic Akkermansia muciniphila on D-galactose/AlCl3 mediated Alzheimer’s disease-like rats. Experimental Gerontology, 170, 111959. https://doi.org/10.1016/j.exger.2022.111959
  • Hennequin, C., Kauffmann-Lacroix, C., Jobert, A., Viard, J. P., Ricour, C., Jacquemin, J. L., & Berche, P. (2000). Possible role of catheters in Saccharomyces boulardii fungemia. European Journal of Clinical Microbiology & Infectious Diseases: Official Publication of the European Society of Clinical Microbiology, 19(1), 16–20. https://doi.org/10.1007/s100960050003
  • Hertzberger, R., Arents, J., Dekker, H. L., Pridmore, R. D., Gysler, C., Kleerebezem, M., & de Mattos, M. J. T. (2014). H2O2 Production in Species of the Lactobacillus acidophilus Group: A Central Role for a Novel NADH-Dependent Flavin Reductase. Applied and Environmental Microbiology, 80(7), 2229–2239. https://doi.org/10.1128/AEM.04272-13
  • Heydari, R., Khosravifar, M., Abiri, S., Dashtbin, S., Alvandi, A., Nedaei, S. E., Salimi, Z., Zarei, F., & Abiri, R. (2025). A domestic strain of Lactobacillus rhamnosus attenuates cognitive deficit and pro-inflammatory cytokine expression in an animal model of Alzheimer’s disease. Behavioural Brain Research, 476, 115277. https://doi.org/10.1016/j.bbr.2024.115277
  • Hooper, L. V., Littman, D. R., & Macpherson, A. J. (2012). Interactions Between the Microbiota and the Immune System. Science, 336(6086), 1268–1273. https://doi.org/10.1126/science.1223490
  • Hossain, M. S., & Hussain, M. H. (2025). Multi‐Target Drug Design in Alzheimer’s Disease Treatment: Emerging Technologies, Advantages, Challenges, and Limitations. Pharmacology Research & Perspectives, 13(4), e70131. https://doi.org/10.1002/prp2.70131
  • Hu, X., Zhang, Y., Gu, C., Wu, R., Yao, Y., Gao, F., Luo, L., & Zhang, Y. (2023). TMAO promotes dementia progression by mediating the PI3K/Akt/mTOR pathway. Tissue and Cell, 81, 102034. https://doi.org/10.1016/j.tice.2023.102034
  • Huang, C. B., Altimova, Y., Myers, T. M., & Ebersole, J. L. (2011). Short- and medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms. Archives of Oral Biology, 56(7), 650–654. https://doi.org/10.1016/j.archoralbio.2011.01.011
  • Imbimbo, B. P., Lombard, J., & Pomara, N. (2005). Pathophysiology of Alzheimer’s Disease. Neuroimaging Clinics of North America, 15(4), 727–753. https://doi.org/10.1016/j.nic.2005.09.009
  • Imperial, I. C. V. J., & Ibana, J. A. (2016). Addressing the Antibiotic Resistance Problem with Probiotics: Reducing the Risk of Its Double-Edged Sword Effect. Frontiers in Microbiology, 07. https://doi.org/10.3389/fmicb.2016.01983
  • Ittner, L. M., Ke, Y. D., Delerue, F., Bi, M., Gladbach, A., Van Eersel, J., Wölfing, H., Chieng, B. C., Christie, M. J., Napier, I. A., Eckert, A., Staufenbiel, M., Hardeman, E., & Götz, J. (2010). Dendritic Function of Tau Mediates Amyloid-β Toxicity in Alzheimer’s Disease Mouse Models. Cell, 142(3), 387–397. https://doi.org/10.1016/j.cell.2010.06.036
  • Jahvnavi, Garg, P., & Srivastava, P. (2025). Metagenomics study reveals altered composition of Avispirillum, Phocaeicola, Bacteroides, and Faecalibacterium in the gut of patients suffering with Alzheimer’s disease. Ecological Genetics and Genomics, 34, 100322. https://doi.org/10.1016/j.egg.2025.100322
  • Jan, T., Negi, R., Sharma, B., Kumar, S., Singh, S., Rai, A. K., Shreaz, S., Rustagi, S., Chaudhary, N., Kaur, T., Kour, D., Sheikh, M. A., Kumar, K., Yadav, A. N., & Ahmed, N. (2024). Next generation probiotics for human health: An emerging perspective. Heliyon, 10(16), e35980. https://doi.org/10.1016/j.heliyon.2024.e35980
  • Jastrząb, R., Graczyk, D., & Siedlecki, P. (2021). Molecular and Cellular Mechanisms Influenced by Postbiotics. International Journal of Molecular Sciences, 22(24), 13475. https://doi.org/10.3390/ijms222413475
  • Kang, E. J., Cha, M.-G., Kwon, G.-H., Han, S. H., Yoon, S. J., Lee, S. K., Ahn, M. E., Won, S.-M., Ahn, E. H., & Suk, K. T. (2024). Akkermansia muciniphila improve cognitive dysfunction by regulating BDNF and serotonin pathway in gut-liver-brain axis. Microbiome, 12(1), 181. https://doi.org/10.1186/s40168-024-01924-8
  • Kang, M. J., Jeong, H., Kim, S., Shin, J., Song, Y., Lee, B.H., Park, H.G., Lee, T.H., Jiang, H.H., Han, Y.S., Lee, B.G., Lee, H.J., Park, M.J., & Park, Y.S. (2023). Structural analysis and prebiotic activity of exopolysaccharide produced by probiotic strain Bifidobacterium bifidum EPS DA-LAIM. Food Science and Biotechnology, 32(4), 517–529. https://doi.org/10.1007/s10068-022-01213-w
  • Kashyap, P. C., Chia, N., Nelson, H., Segal, E., & Elinav, E. (2017). Microbiome at the Frontier of Personalized Medicine. Mayo Clinic Proceedings, 92(12), 1855–1864. https://doi.org/10.1016/j.mayocp.2017.10.004
  • Kaufmann, F. N., Costa, A. P., Ghisleni, G., Diaz, A. P., Rodrigues, A. L. S., Peluffo, H., & Kaster, M. P. (2017). NLRP3 inflammasome-driven pathways in depression: Clinical and preclinical findings. Brain, Behavior, and Immunity, 64, 367–383. https://doi.org/10.1016/j.bbi.2017.03.002
  • Kazemi, N., Khorasgani, M. R., Noorbakhshnia, M., Razavi, S. M., Narimani, T., & Naghsh, N. (2024). Protective effects of a lactobacilli mixture against Alzheimer’s disease-like pathology triggered by Porphyromonas gingivalis. Scientific Reports, 14(1), 27283. https://doi.org/10.1038/s41598-024-77853-1
  • Kazemipoor, M., Radzi, C. W. J. W. M., Begum, K., & Yaze, I. (2012). Screening of antibacterial activity of lactic acid bacteria isolated from fermented vegetables against food borne pathogens (Version 1). arXiv. https://doi.org/10.48550/ARXIV.1206.6366
  • Kesika, P., Suganthy, N., Sivamaruthi, B. S., & Chaiyasut, C. (2021). Role of gut-brain axis, gut microbial composition, and probiotic intervention in Alzheimer’s disease. Life Sciences, 264, 118627. https://doi.org/10.1016/j.lfs.2020.118627
  • Kim, Y., Kim, H. J., & Ji, K. (2022). The Proliferation Inhibitory Effect of Postbiotics Prepared from Probiotics with Antioxidant Activity against HT-29 Cells. Applied Sciences, 12(24), 12519. https://doi.org/10.3390/app122412519
  • Knox, E. G., Aburto, M. R., Clarke, G., Cryan, J. F., & O’Driscoll, C. M. (2022). The blood-brain barrier in aging and neurodegeneration. Molecular Psychiatry, 27(6), 2659–2673. https://doi.org/10.1038/s41380-022-01511-z
  • Kumar, A., Singh, A., & Ekavali. (2015). A review on Alzheimer’s disease pathophysiology and its management: An update. Pharmacological Reports, 67(2), 195–203. https://doi.org/10.1016/j.pharep.2014.09.004
  • Kumar, A., Sivamaruthi, B. S., Dey, S., Kumar, Y., Malviya, R., Prajapati, B. G., & Chaiyasut, C. (2024). Probiotics as modulators of gut-brain axis for cognitive development. Frontiers in Pharmacology, 15, 1348297. https://doi.org/10.3389/fphar.2024.1348297
  • Kunevičius, A., Vijaya, A. K., Atzeni, A., Mingaila, J., Šimoliūnė, I., Jamontas, R., Keževičiūtė, E., Gueimonde, M., Meškys, R., Baltriukienė, D., Arboleya, S., & Burokas, A. (2025). Intermittent supplementation with Akkermansia muciniphila and galactooligosaccharides modulates Alzheimer’s disease progression, gut microbiota, and colon short-chain fatty acid profiles in mice. Frontiers in Aging Neuroscience, 17, 1617980. https://doi.org/10.3389/fnagi.2025.1617980
  • Lange, O., Proczko-Stepaniak, M., & Mika, A. (2023). Short-Chain Fatty Acids—A Product of the Microbiome and Its Participation in Two-Way Communication on the Microbiome-Host Mammal Line. Current Obesity Reports, 12(2), 108–126. https://doi.org/10.1007/s13679-023-00503-6
  • Lebeer, S., Vanderleyden, J., & De Keersmaecker, S. C. J. (2010). Host interactions of probiotic bacterial surface molecules: Comparison with commensals and pathogens. Nature Reviews. Microbiology, 8(3), 171–184. https://doi.org/10.1038/nrmicro2297
  • Lee, H.-J., Lee, K.-E., Kim, J.-K., & Kim, D.-H. (2019). Suppression of gut dysbiosis by Bifidobacterium longum alleviates cognitive decline in 5XFAD transgenic and aged mice. Scientific Reports, 9(1), 11814. https://doi.org/10.1038/s41598-019-48342-7
  • Lee, J. Y., Kim, J. H., Park, J.-Y., Kim, B.-K., Heo, H. J., & Choi, S.-I. (2025). Neuroprotective Effect of Lactobacillus gasseri MG4247 and Lacticaseibacillus rhamnosus MG4644 Against Oxidative Damage via NF-κB Signaling Pathway. Fermentation, 11(7), 385. https://doi.org/10.3390/fermentation11070385
  • Lherm, T., Monet, C., Nougière, B., Soulier, M., Larbi, D., Le Gall, C., Caen, D., & Malbrunot, C. (2002). Seven cases of fungemia with Saccharomyces boulardii in critically ill patients. Intensive Care Medicine, 28(6), 797–801. https://doi.org/10.1007/s00134-002-1267-9
  • Li, N., Tan, S., Wang, Y., Deng, J., Wang, N., Zhu, S., Tian, W., Xu, J., & Wang, Q. (2023). Akkermansia muciniphila supplementation prevents cognitive impairment in sleep-deprived mice by modulating microglial engulfment of synapses. Gut Microbes, 15(2), 2252764. https://doi.org/10.1080/19490976.2023.2252764
  • Li, X., Lin, D., Hu, X., Shi, X., Huang, W., Ouyang, Y., Chen, X., Xiong, Y., Wu, X., Hong, D., & Chen, H. (2025). Akkermansia muciniphila Modulates Central Nervous System Autoimmune Response and Cognitive Impairment by Inhibiting Hippocampal NLRP3 ‐Mediated Neuroinflammation. CNS Neuroscience & Therapeutics, 31(3), e70320. https://doi.org/10.1111/cns.70320
  • Liu, S., Gao, J., Zhu, M., Liu, K., & Zhang, H.-L. (2020). Gut Microbiota and Dysbiosis in Alzheimer’s Disease: Implications for Pathogenesis and Treatment. Molecular Neurobiology, 57(12), 5026–5043. https://doi.org/10.1007/s12035-020-02073-3
  • Maftei, N.-M., Raileanu, C. R., Balta, A. A., Ambrose, L., Boev, M., Marin, D. B., & Lisa, E. L. (2024). The Potential Impact of Probiotics on Human Health: An Update on Their Health-Promoting Properties. Microorganisms, 12(2), 234. https://doi.org/10.3390/microorganisms12020234
  • Maftoon, H., Davar Siadat, S., Tarashi, S., Soroush, E., Basir Asefi, M., Rahimi Foroushani, A., & Mehdi Soltan Dallal, M. (2024). Ameliorative effects of Akkermansia muciniphila on anxiety-like behavior and cognitive deficits in a rat model of Alzheimer’s disease. Brain Research, 1845, 149280. https://doi.org/10.1016/j.brainres.2024.149280
  • Maiuolo, J., Bulotta, R. M., Ruga, S., Nucera, S., Macrì, R., Scarano, F., Oppedisano, F., Carresi, C., Gliozzi, M., Musolino, V., Mollace, R., Muscoli, C., & Mollace, V. (2024). The Postbiotic Properties of Butyrate in the Modulation of the Gut Microbiota: The Potential of Its Combination with Polyphenols and Dietary Fibers. International Journal of Molecular Sciences, 25(13), 6971. https://doi.org/10.3390/ijms25136971
  • Mao, B., Guo, W., Liu, X., Cui, S., Zhang, Q., Zhao, J., Tang, X., & Zhang, H. (2023). Potential Probiotic Properties of Blautia producta Against Lipopolysaccharide-Induced Acute Liver Injury. Probiotics and Antimicrobial Proteins, 15(3), 785–796. https://doi.org/10.1007/s12602-023-10044-y
  • Meng, C., Feng, S., Hao, Z., & Liu, H. (2025). A combination of potential psychobiotics alleviates anxiety and depression behaviors induced by chronic unpredictable mild stress. NPJ Biofilms and Microbiomes, 11(1), 147. https://doi.org/10.1038/s41522-025-00779-7
  • Mishra, V., Yadav, D., Solanki, K. S., Koul, B., & Song, M. (2023). A Review on the Protective Effects of Probiotics against Alzheimer’s Disease. Biology, 13(1), 8. https://doi.org/10.3390/biology13010008
  • Mohamed, M. Y. (2024). Probiotics Benefits, Potential Limitations and Risks. Egyptian Academic Journal of Biological Sciences. C, Physiology and Molecular Biology, 16(1), 253–276. https://doi.org/10.21608/eajbsc.2024.344590
  • Mohamed, M. Y. (2024). Probiotics Benefits, Potential Limitations and Risks. Egyptian Academic Journal of Biological Sciences. C, Physiology and Molecular Biology, 16(1), 253–276. https://doi.org/10.21608/eajbsc.2024.344590
  • Moiseyenko, A., Antonello, G., Schonhoff, A. M., Boktor, J. C., Long, K., Dirks, B., Oguienko, A. D., Winnett, A. V., Simpson, P., Daeizadeh, D., Ismagilov, R. F., Krajmalnik-Brown, R., Segata, N., Waldron, L. D., & Mazmanian, S. K. (2025). Faecalibacterium prausnitzii , depleted in the Parkinson’s disease microbiome, improves motor deficits in α-synuclein overexpressing mice. Physiology. https://doi.org/10.1101/2025.09.18.677192
  • Nogal, A., Valdes, A. M., & Menni, C. (2021). The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health. Gut Microbes, 13(1), 1897212. https://doi.org/10.1080/19490976.2021.1897212
  • Olszak, T., An, D., Zeissig, S., Vera, M. P., Richter, J., Franke, A., Glickman, J. N., Siebert, R., Baron, R. M., Kasper, D. L., & Blumberg, R. S. (2012). Microbial Exposure During Early Life Has Persistent Effects on Natural Killer T Cell Function. Science, 336(6080), 489–493. https://doi.org/10.1126/science.1219328
  • O’Riordan, K. J., Collins, M. K., Moloney, G. M., Knox, E. G., Aburto, M. R., Fülling, C., Morley, S. J., Clarke, G., Schellekens, H., & Cryan, J. F. (2022). Short chain fatty acids: Microbial metabolites for gut-brain axis signalling. Molecular and Cellular Endocrinology, 546, 111572. https://doi.org/10.1016/j.mce.2022.111572
  • Ou, Z., Deng, L., Lu, Z., Wu, F., Liu, W., Huang, D., & Peng, Y. (2020). Protective effects of Akkermansia muciniphila on cognitive deficits and amyloid pathology in a mouse model of Alzheimer’s disease. Nutrition & Diabetes, 10(1), 12. https://doi.org/10.1038/s41387-020-0115-8
  • Park, S., & Wu, X. (2022). Modulation of the Gut Microbiota in Memory Impairment and Alzheimer’s Disease via the Inhibition of the Parasympathetic Nervous System. International Journal of Molecular Sciences, 23(21), 13574. https://doi.org/10.3390/ijms232113574
  • Parker, A., Fonseca, S., & Carding, S. R. (2020). Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microbes, 11(2), 135–157. https://doi.org/10.1080/19490976.2019.1638722
  • Parnell, J. A., & Reimer, R. A. (2010). Effect of prebiotic fibre supplementation on hepatic gene expression and serum lipids: A dose–response study in JCR:LA-cp rats. British Journal of Nutrition, 103(11), 1577–1584. https://doi.org/10.1017/S0007114509993539
  • Passeri, E., Elkhoury, K., Morsink, M., Broersen, K., Linder, M., Tamayol, A., Malaplate, C., Yen, F. T., & Arab-Tehrany, E. (2022). Alzheimer’s Disease: Treatment Strategies and Their Limitations. International Journal of Molecular Sciences, 23(22), 13954. https://doi.org/10.3390/ijms232213954
  • Patricio-Martínez, A., Patricio, F., Macuil-Chapuli, E., Martínez-Juárez, E. Á., Flores-Díaz, S., Cedillo-Ramírez, M. L., & Limón, I. D. (2025). The role of probiotics, prebiotics, and postbiotics: Cellular and molecular pathways activated on glial cells in Alzheimer’s disease. Frontiers in Neuroscience, 19, 1598011. https://doi.org/10.3389/fnins.2025.1598011
  • Piewngam, P., Zheng, Y., Nguyen, T. H., Dickey, S. W., Joo, H.-S., Villaruz, A. E., Glose, K. A., Fisher, E. L., Hunt, R. L., Li, B., Chiou, J., Pharkjaksu, S., Khongthong, S., Cheung, G. Y. C., Kiratisin, P., & Otto, M. (2018). Pathogen elimination by probiotic Bacillus via signaling interference. Nature, 562(7728), 532–537. https://doi.org/10.1038/s41586-018-0616-y
  • Poncelet, A., Ruelle, L., Konopnicki, D., Miendje Deyi, V. Y., & Dauby, N. (2021). Saccharomyces cerevisiae fungemia: Risk factors, outcome and links with S. boulardii-containing probiotic administration. Infectious Diseases Now, 51(3), 293–295. https://doi.org/10.1016/j.idnow.2020.12.003
  • Qian, K., Chen, S., Wang, J., Sheng, K., Wang, Y., & Zhang, M. (2022). A β-N-acetylhexosaminidase Amuc_2109 from Akkermansia muciniphila protects against dextran sulfate sodium-induced colitis in mice by enhancing intestinal barrier and modulating gut microbiota. Food & Function, 13(4), 2216–2227. https://doi.org/10.1039/d1fo04094d
  • Rafique, N., Jan, S. Y., Dar, A. H., Dash, K. K., Sarkar, A., Shams, R., Pandey, V. K., Khan, S. A., Amin, Q. A., & Hussain, S. Z. (2023). Promising bioactivities of postbiotics: A comprehensive review. Journal of Agriculture and Food Research, 14, 100708. https://doi.org/10.1016/j.jafr.2023.100708
  • Rahman, Z., & Dandekar, M. P. (2023). Implication of Paraprobiotics in Age-Associated Gut Dysbiosis and Neurodegenerative Diseases. NeuroMolecular Medicine, 25(1), 14–26. https://doi.org/10.1007/s12017-022-08722-1
  • Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G. A. D., Gasbarrini, A., & Mele, M. C. (2019). What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms, 7(1), 14. https://doi.org/10.3390/microorganisms7010014
  • Roberts, K. D., Ahmed, S., San Valentin, E., Di Martino, L., McCormick, T. S., & Ghannoum, M. A. (2024). Immunomodulatory Properties of Multi-Strain Postbiotics on Human CD14+ Monocytes. Life, 14(12), 1673. https://doi.org/10.3390/life14121673
  • Sáez, D., Fernández, P., Rivera, A., Andrews, E., & Oñate, A. (2012). Oral immunization of mice with recombinant Lactococcus lactis expressing Cu,Zn superoxide dismutase of Brucella abortus triggers protective immunity. Vaccine, 30(7), 1283–1290. https://doi.org/10.1016/j.vaccine.2011.12.088
  • Sakr, E., Farid, O., & Mohamed, M. (2022). The potential of Fermented Asparagus sprengeri extract by Lactobacillus plantarum DMS 20174 on Antioxidant Properties and Memory Retention in vitro and in vivo. Egyptian Journal of Chemistry, 0(0), 0–0. https://doi.org/10.21608/ejchem.2022.141992.6211
  • Sampson, T. R., Challis, C., Jain, N., Moiseyenko, A., Ladinsky, M. S., Shastri, G. G., Thron, T., Needham, B. D., Horvath, I., Debelius, J. W., Janssen, S., Knight, R., Wittung-Stafshede, P., Gradinaru, V., Chapman, M., & Mazmanian, S. K. (2020). A gut bacterial amyloid promotes α-synuclein aggregation and motor impairment in mice. eLife, 9, e53111. https://doi.org/10.7554/eLife.53111
  • Sanders, M. E., Akkermans, L. M. A., Haller, D., Hammerman, C., Heimbach, J., Hörmannsperger, G., Huys, G., Levy, D. D., Lutgendorff, F., Mack, D., Phothirath, P., Solano-Aguilar, G., & Vaughan, E. (2010). Safety assessment of probiotics for human use. Gut Microbes, 1(3), 164–185. https://doi.org/10.4161/gmic.1.3.12127
  • Sarita, B., Samadhan, D., Hassan, M. Z., & Kovaleva, E. G. (2025). A comprehensive review of probiotics and human health-current prospective and applications. Frontiers in Microbiology, 15, 1487641. https://doi.org/10.3389/fmicb.2024.1487641
  • Sarkar, S., Maparu, K., & Aran, K. R. (2025). Postbiotics as a Therapeutic Tool in Depression: Exploring into Molecular Pathways and Neuroprotective Effects. Probiotics and Antimicrobial Proteins. https://doi.org/10.1007/s12602-025-10703-2
  • Shanahan, F. (2003). Probiotics: A Perspective on Problems and Pitfalls. Scandinavian Journal of Gastroenterology, 38(237), 34–36. https://doi.org/10.1080/00855910310001476
  • Shi, S., Zhang, Q., Sang, Y., Ge, S., Wang, Q., Wang, R., & He, J. (2022). Probiotic Bifidobacterium longum BB68S Improves Cognitive Functions in Healthy Older Adults: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients, 15(1), 51. https://doi.org/10.3390/nu15010051
  • Shin, J. M., Gwak, J. W., Kamarajan, P., Fenno, J. C., Rickard, A. H., & Kapila, Y. L. (2016). Biomedical applications of nisin. Journal of Applied Microbiology, 120(6), 1449–1465. https://doi.org/10.1111/jam.13033
  • Shiqing, Y., Xinjie, L., Xiaotong, Z., Jiayan, C., Jiahai, L., Xiaodong, C., Yongliang, L., & Xiang, L. (2025). Clostridium butyricum enhances cognitive function in APP/PS1 mice by modulating neuropathology and regulating acetic acid levels in the gut microbiota. Microbiology Spectrum, 13(8), e00178-25. https://doi.org/10.1128/spectrum.00178-25
  • Singh, D., & Agarwal, V. (2022). Herbal antibacterial remedy against upper respiratory infection causing bacteria and in vivo safety analysis. Vegetos, 35(1), 264–268. https://doi.org/10.1007/s42535-021-00281-3
  • Siripaopradit, Y., Chatsirisakul, O., Ariyapaisalkul, T., & Sereemaspun, A. (2024). Exploring the gut-brain axis in alzheimer’s disease treatment via probiotics: Evidence from animal studies-a systematic review and meta-analysis. BMC Neurology, 24(1), 481. https://doi.org/10.1186/s12883-024-03978-5
  • Socała, K., Doboszewska, U., Szopa, A., Serefko, A., Włodarczyk, M., Zielińska, A., Poleszak, E., Fichna, J., & Wlaź, P. (2021). The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacological Research, 172, 105840. https://doi.org/10.1016/j.phrs.2021.105840
  • Sokol, H., Pigneur, B., Watterlot, L., Lakhdari, O., Bermúdez-Humarán, L. G., Gratadoux, J.-J., Blugeon, S., Bridonneau, C., Furet, J.-P., Corthier, G., Grangette, C., Vasquez, N., Pochart, P., Trugnan, G., Thomas, G., Blottière, H. M., Doré, J., Marteau, P., Seksik, P., & Langella, P. (2008). Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proceedings of the National Academy of Sciences of the United States of America, 105(43), 16731–16736. https://doi.org/10.1073/pnas.0804812105
  • Sreeja, V., & Prajapati, J. B. (2013). Probiotic Formulations: Application and Status as Pharmaceuticals—A Review. Probiotics and Antimicrobial Proteins, 5(2), 81–91. https://doi.org/10.1007/s12602-013-9126-2
  • Stancu, I.-C., Vasconcelos, B., Terwel, D., & Dewachter, I. (2014). Models of β-amyloid induced Tau-pathology: The long and “folded” road to understand the mechanism. Molecular Neurodegeneration, 9(1), 51. https://doi.org/10.1186/1750-1326-9-51
  • Su, Y., Wang, D., Liu, N., Yang, J., Sun, R., & Zhang, Z. (2023). Clostridium butyricum improves cognitive dysfunction in ICV-STZ-induced Alzheimer’s disease mice via suppressing TLR4 signaling pathway through the gut-brain axis. PLOS ONE, 18(6), e0286086. https://doi.org/10.1371/journal.pone.0286086
  • Tan, M.-S., Yu, J.-T., Jiang, T., Zhu, X.-C., & Tan, L. (2013). The NLRP3 Inflammasome in Alzheimer’s Disease. Molecular Neurobiology, 48(3), 875–882. https://doi.org/10.1007/s12035-013-8475-x
  • Tejero-Sariñena, S., Barlow, J., Costabile, A., Gibson, G. R., & Rowland, I. (2012). In vitro evaluation of the antimicrobial activity of a range of probiotics against pathogens: Evidence for the effects of organic acids. Anaerobe, 18(5), 530–538. https://doi.org/10.1016/j.anaerobe.2012.08.004
  • Thomas, C. M., & Versalovic, J. (2010). Probiotics-host communication. Gut Microbes, 1(3), 148–163. https://doi.org/10.4161/gmic.1.3.11712
  • Tiwari, A., Ika Krisnawati, D., Susilowati, E., Mutalik, C., & Kuo, T.-R. (2024). Next-Generation Probiotics and Chronic Diseases: A Review of Current Research and Future Directions. Journal of Agricultural and Food Chemistry, 72(50), 27679–27700. https://doi.org/10.1021/acs.jafc.4c08702
  • Toba, T., Samant, S. K., Yoshioka, E., & Itoh, T. (1991). Reutericin 6, a new bacteriocin produced by Lactobacillus reuteri LA 6. Letters in Applied Microbiology, 13(6), 281–286. https://doi.org/10.1111/j.1472-765X.1991.tb00629.x
  • Tsilingiri, K., & Rescigno, M. (2013). Postbiotics: What else? Beneficial Microbes, 4(1), 101–107. https://doi.org/10.3920/BM2012.0046
  • Tsioti, I., Steiner, B. L., Escher, P., Zinkernagel, M. S., Benz, P. M., & Kokona, D. (2023). Endothelial Toll-like receptor 4 is required for microglia activation in the murine retina after systemic lipopolysaccharide exposure. Journal of Neuroinflammation, 20(1), 25. https://doi.org/10.1186/s12974-023-02712-1
  • Ulsemer, P., Toutounian, K., Schmidt, J., Karsten, U., & Goletz, S. (2012). Preliminary safety evaluation of a new Bacteroides xylanisolvens isolate. Applied and Environmental Microbiology, 78(2), 528–535. https://doi.org/10.1128/AEM.06641-11
  • Un-Nisa, A., Khan, A., Zakria, M., Siraj, S., Ullah, S., Tipu, M. K., Ikram, M., & Kim, M. O. (2022). Updates on the Role of Probiotics against Different Health Issues: Focus on Lactobacillus. International Journal of Molecular Sciences, 24(1), 142. https://doi.org/10.3390/ijms24010142
  • Vinderola, G., Sanders, M. E., & Salminen, S. (2022). The Concept of Postbiotics. Foods, 11(8), 1077. https://doi.org/10.3390/foods11081077
  • Wang, L., Zhao, R., Li, X., Shao, P., Xie, J., Su, X., Xu, S., Huang, Y., & Hu, S. (2024). Lactobacillus rhamnosus GG improves cognitive impairments in mice with sepsis. PeerJ, 12, e17427. https://doi.org/10.7717/peerj.17427
  • Wang, Y., Chen, W., Han, Y., Xu, X., Yang, A., Wei, J., Hong, D., Fang, X., & Chen, T. (2023). Neuroprotective effect of engineered Clostridium butyricum-pMTL007-GLP-1 on Parkinson’s disease mice models via promoting mitophagy. Bioengineering & Translational Medicine, 8(3), e10505. https://doi.org/10.1002/btm2.10505
  • Wang, Z., Wang, C., Yuan, B., Liu, L., Zhang, H., Zhu, M., Chai, H., Peng, J., Huang, Y., Zhou, S., Liu, J., Wu, L., & Wang, W. (2025). Akkermansia muciniphila and its metabolite propionic acid maintains neuronal mitochondrial division and autophagy homeostasis during Alzheimer’s disease pathologic process via GPR41 and GPR43. Microbiome, 13(1), 16. https://doi.org/10.1186/s40168-024-02001-w
  • Williams, N. T. (2010). Probiotics. American Journal of Health-System Pharmacy, 67(6), 449–458. https://doi.org/10.2146/ajhp090168
  • Wombwell, E., Bransteitter, B., & Gillen, L. R. (2021). Incidence of Saccharomyces cerevisiae fungemia in hospitalised patients administered Saccharomyces boulardii probiotic. Mycoses, 64(12), 1521–1526. https://doi.org/10.1111/myc.13375
  • Wu, Y., Wang, Y., Hu, A., Shu, X., Huang, W., Liu, J., Wang, B., Zhang, R., Yue, M., & Yang, C. (2022). Lactobacillus plantarum-derived postbiotics prevent Salmonella-induced neurological dysfunctions by modulating gut-brain axis in mice. Frontiers in Nutrition, 9, 946096. https://doi.org/10.3389/fnut.2022.946096
  • Xu, K., Wang, G., Gong, J., Yang, X., Cheng, Y., Li, D., Sheng, S., & Zhang, F. (2025). Akkermansia muciniphila protects against dopamine neurotoxicity by modulating butyrate to inhibit microglia-mediated neuroinflammation. International Immunopharmacology, 152, 114374. https://doi.org/10.1016/j.intimp.2025.114374
  • Yan, L., Li, H., Qian, Y., Zhang, J., Cong, S., Zhang, X., Wu, L., Wang, Y., Wang, M., & Yu, T. (2024). Transcutaneous vagus nerve stimulation: A new strategy for Alzheimer’s disease intervention through the brain-gut-microbiota axis? Frontiers in Aging Neuroscience, 16. https://doi.org/10.3389/fnagi.2024.1334887
  • Yu, Y., Yu, S., Battaglia, G., & Tian, X. (2024). Amyloid‐β in Alzheimer’s disease: Structure, toxicity, distribution, treatment, and prospects. Ibrain, ibra.12155. https://doi.org/10.1002/ibra.12155
  • Yue, M., Wei, J., Chen, W., Hong, D., Chen, T., & Fang, X. (2022). Neurotrophic Role of the Next-Generation Probiotic Strain L. lactis MG1363-pMG36e-GLP-1 on Parkinson’s Disease via Inhibiting Ferroptosis. Nutrients, 14(22), 4886. https://doi.org/10.3390/nu14224886
  • Yun, H.-M., Park, K.-R., Kim, E.-C., Kim, S., & Hong, J. T. (2015). Serotonin 6 receptor controls Alzheimer’s disease and depression. Oncotarget, 6(29), 26716–26728. https://doi.org/10.18632/oncotarget.5777
  • Zajac, D. J., Shaw, B. C., Braun, D. J., Green, S. J., Morganti, J. M., & Estus, S. (2022). Exogenous Short Chain Fatty Acid Effects in APP/PS1 Mice. Frontiers in Neuroscience, 16, 873549. https://doi.org/10.3389/fnins.2022.873549
  • Zheng, M., Ye, H., Yang, X., Shen, L., Dang, X., Liu, X., Gong, Y., Wu, Q., Wang, L., Ge, X., Fang, X., Hou, B., Zhang, P., Tang, R., Zheng, K., Huang, X.-F., & Yu, Y. (2024). Probiotic Clostridium butyricum ameliorates cognitive impairment in obesity via the microbiota-gut-brain axis. Brain, Behavior, and Immunity, 115, 565–587. https://doi.org/10.1016/j.bbi.2023.11.016
  • Zhong, S.-R., Kuang, Q., Zhang, F., Chen, B., & Zhong, Z.-G. (2021). Functional roles of the microbiota-gut-brain axis in Alzheimer’s disease: Implications of gut microbiota-targeted therapy. Translational Neuroscience, 12(1), 581–600. https://doi.org/10.1515/tnsci-2020-0206
  • Zhou, Y., Xie, L., Schröder, J., Schuster, I. S., Nakai, M., Sun, G., Sun, Y. B. Y., Mariño, E., Degli-Esposti, M. A., Marques, F. Z., Grubman, A., Polo, J. M., & Mackay, C. R. (2023). Dietary Fiber and Microbiota Metabolite Receptors Enhance Cognition and Alleviate Disease in the 5xFAD Mouse Model of Alzheimer’s Disease. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 43(37), 6460–6475. https://doi.org/10.1523/JNEUROSCI.0724-23.2023
  • Zhu, G., Guo, M., Zhao, J., Zhang, H., Wang, G., & Chen, W. (2024). Environmental enrichment in combination with Bifidobacterium breve HNXY26M4 intervention amplifies neuroprotective benefits in a mouse model of Alzheimer’s disease by modulating glutamine metabolism of the gut microbiome. Food Science and Human Wellness, 13(2), 982–992. https://doi.org/10.26599/FSHW.2022.9250084
  • Zhu, L., Zhong, M., Elder, G. A., Sano, M., Holtzman, D. M., Gandy, S., Cardozo, C., Haroutunian, V., Robakis, N. K., & Cai, D. (2015). Phospholipid dysregulation contributes to ApoE4-associated cognitive deficits in Alzheimer’s disease pathogenesis. Proceedings of the National Academy of Sciences, 112(38), 11965–11970. https://doi.org/10.1073/pnas.1510011112
  • Zhu, X., Shen, J., Feng, S., Huang, C., Wang, H., Huo, F., & Liu, H. (2023). Akkermansia muciniphila, which is enriched in the gut microbiota by metformin, improves cognitive function in aged mice by reducing the proinflammatory cytokine interleukin-6. Microbiome, 11(1), 120. https://doi.org/10.1186/s40168-023-01567-1
  • Żółkiewicz, J., Marzec, A., Ruszczyński, M., & Feleszko, W. (2020). Postbiotics—A Step Beyond Pre- and Probiotics. Nutrients, 12(8), 2189. https://doi.org/10.3390/nu12082189
  • Zou, X., Zou, G., Zou, X., Wang, K., & Chen, Z. (2024). Gut microbiota and its metabolites in Alzheimer’s disease: From pathogenesis to treatment. PeerJ, 12, e17061. https://doi.org/10.7717/peerj.17061
  •  

How to Cite

Mariyam Hussain and Mohammad Ikram. Next Generation Probiotics and Postbiotics: Modulating the Gut Brain Axis in Alzheimer’s Disease. J. Pharm. Technol. Res. Manag.. 2025, 13, 69-92
Next Generation Probiotics and Postbiotics: Modulating the Gut Brain Axis in Alzheimer’s Disease

Current Issue

PeriodicityBiannually
Issue-1June
Issue-2December
ISSN Print2321-2217
ISSN Online2321-2225
RNI No.CHAENG/2013/50088

This work is licensed under a Creative Commons Attribution 4.0 International License.

Articles in Journal of Pharmaceutical Technology, Research and Management (J. Pharm. Tech. Res. Management) by Chitkara University Publications are Open Access articles that are published with licensed under a Creative Commons Attribution- CC-BY 4.0 International License. Based on a work at https://jptrm.chitkara.edu.in/. This license permits one to use, remix, tweak and reproduction in any medium, even commercially provided one give credit for the original creation.

View Legal Code of the above-mentioned license, https://creativecommons.org/licenses/by/4.0/legalcode

View Licence Deed here https://creativecommons.org/licenses/by/4.0/

Creative Commons License

Journal of Pharmaceutical Technology, Research and Management by Chitkara University Publications is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at https://jptrm.chitkara.edu.in//

Visibility, Memberships and Ethics