Hydrogels in Chronic Wound Care: A Multifaceted Approach to Healing and Regeneration
Home >
2025,
Vol. 13 No. 01 > Hydrogels in Chronic Wound Care: A Multifaceted Approach to Healing and Regeneration
Published: August 25, 2025
Authors
Himanshu Sharma, Sanchit Dhankhar, Vishnu Mittal, Balraj Saini, Pooja Mittal, and Akashdeep Singh
Keywords
Hydrogels, Polymers, Wound dressings, Chronic wounds, Wound healing
Abstract
Background: In wealthy nations, 1-2% of people suffer from serious chronic wounds. In India, chronic wounds have a prevalence rate of approximately 4.5 per 1000 individuals, with diabetic foot ulcers and pressure ulcers being the most common.
Purpose: Chronic wound treatment is necessary to maintain patients’ physical and emotional well-being and improve quality of life. Numerous methods, including hydrogel dressings, skin grafts, debridement, ultrasound, electromagnetic, and negative pressure wound treatment, may be used to treat chronic wounds.
Methods: Recent literature has been surveyed from PUBMED, GOOGLE SCHOLAR, etc., like search engines, for summarizing detailed ongoing developments in the field of hydrogels in chronic wound care.
Conclusions: Due to their functional qualities that may be adjusted, hydrogel dressings are a viable and promising solution for accelerating the healing of chronic wounds. These characteristics include biodegradability, adhesion, and bioactivities that are pre-antigenic, antibacterial, and anti-inflammatory. This overview summarizes the various types of chronic wounds, stages of the healing process, and important treatment modalities. The advantages of hydrogel-based dressings for treating chronic wounds are discussed, along with their multifunctional qualities, illustrating their superiority over other dressing types for long-term wound healing.
References
- Abarca-Cabrera, L., Fraga-García, P., & Berensmeier, S. (2021). Bio-nano interactions: binding proteins, polysaccharides, lipids and nucleic acids onto magnetic nanoparticles. Biomaterials Research, 25(1), 12. https://doi.org/10.3389/fimmu.2024.1395479
- Abazari, M., Ghaffari, A., Rashidzadeh, H., Badeleh, S. M., & Maleki, Y. (2022). A systematic review on classification, identification, and healing process of burn wound healing. The International Journal of Lower Extremity Wounds, 21(1), 18-30. https://doi.org/10.1053/nbin.2001.23176
- Ahmed, M. S., Yun, S., Kim, H.-Y., Ko, S., Islam, M., & Nam, K.-W. (2025). Hydrogels and Microgels: Driving Revolutionary Innovations in Targeted Drug Delivery, Strengthening Infection Management, and Advancing Tissue Repair and Regeneration. Gels, 11(3), 179. https://doi.org/10.1152/physrev.00067.2017
- Al-Mutairi, H. H., Al-Mansour, H. S., Al-Mutairi, M. S., Al-Muraibid, N., Al-Dajani, N. N., Al-Otaibi, S. M., Al-Otaibi, S. S., Al Shamri, A. M., Aldhafeeri, M. M. M., & Alobaida, H. A. A. (2024). Complex Wound Management: Nursing Intervention Protocols-An Updated Review. Journal of Ecohumanism, 3(8), 11893–11908-11893–11908. https://doi.org/10.1080/09546634.2020.1730296
- Almawash, S., Osman, S. K., Mustafa, G., & El Hamd, M. A. (2022). Current and future prospective of injectable hydrogels—design challenges and limitations. Pharmaceuticals, 15(3), 371. https://doi.org/10.1016/j.imbio.2011.01.001
- Anderson, J. M., & Jiang, S. (2016). Implications of the acute and chronic inflammatory response and the foreign body reaction to the immune response of implanted biomaterials. In The Immune Response to Implanted Materials and Devices: The Impact of the Immune System on the Success of an Implant (pp. 15-36). Springer. https://doi.org/10.3389/fcell.2020.00697
- Ashammakhi, N., Ahadian, S., Darabi, M. A., El Tahchi, M., Lee, J., Suthiwanich, K., Sheikhi, A., Dokmeci, M. R., Oklu, R., & Khademhosseini, A. (2019). Minimally invasive and regenerative therapeutics. Advanced materials, 31(1), 1804041. https://doi.org/10.3390/ph15030371
- Basit, A., Yu, H., Wang, L., Uddin, M. A., Wang, Y., Awan, K. M., Keshta, B. E., & Malik, M. O. (2024). Recent advances in wet surface tissue adhesive hydrogels for wound treatment. European Polymer Journal, 113260. https://doi.org/10.1177/1534734620924857
- Bayer, L. R. (2018). Negative-pressure wound therapy. Interventional treatment of wounds: a modern approach for better outcomes, 193-213. https://doi.org/10.3390/ijms23084074
- Bianchera, A., Catanzano, O., Boateng, J., & Elviri, L. (2020). The place of biomaterials in wound healing. Therapeutic dressings and wound healing applications, 337-366. 10.5772/intechopen.1003834
- Bowling, F. L., Rashid, S. T., & Boulton, A. J. (2015). Preventing and treating foot complications associated with diabetes mellitus. Nature Reviews Endocrinology, 11(10), 606-616. https://doi.org/10.1089/wound.2020.1275
- Burgess, J. L., Wyant, W. A., Abdo Abujamra, B., Kirsner, R. S., & Jozic, I. (2021). Diabetic wound-healing science. Medicina, 57(10), 1072. https://doi.org/10.3390/ijms17122085
- Catoira, M. C., González-Payo, J., Fusaro, L., Ramella, M., & Boccafoschi, F. (2020). Natural hydrogels R&D process: technical and regulatory aspects for industrial implementation. Journal of Materials Science: Materials in Medicine, 31(8), 64. https://doi.org/10.1186/s40824-021-00212-y
- Cazander, G., den Ottelander, B. K., Kamga, S., Doomen, M. C., Damen, T. H., & van Well, A. M. E. (2020). Importance of debriding and wound cleansing agents in wound healing. Therapeutic dressings and wound healing applications, 59-89. https://doi.org/10.1016/j.sjbs.2024.103963
- Cefalu, J. E., Barrier, K. M., & Davis, A. H. (2017). Wound infections in critical care. Critical Care Nursing Clinics, 29(1), 81-96. https://doi.org/10.1021/acsnano.1c04206
- Chandra, P., Pathak, R., Sachan, N., & Verma, A. (2025). Proteins as Biocompatible Material for Biomedical Applications. In Sustainable Green Biomaterials As Drug Delivery Systems (pp. 131-163). Springer. https://doi.org/10.1002/adhm.202100477
- Correa, S., Grosskopf, A. K., Lopez Hernandez, H., Chan, D., Yu, A. C., Stapleton, L. M., & Appel, E. A. (2021). Translational applications of hydrogels. Chemical reviews, 121(18), 11385-11457. https://doi.org/10.1016/j.heliyon.2024.e32040
- da Silva, L. P., Reis, R. L., Correlo, V. M., & Marques, A. P. (2019). Hydrogel-based strategies to advance therapies for chronic skin wounds. Annual review of biomedical engineering, 21(1), 145-169. https://doi.org/10.3390/ijms25073849
- Dabiri, G., Damstetter, E., & Phillips, T. (2016). Choosing a wound dressing based on common wound characteristics. Advances in wound care, 5(1), 32-41. https://doi.org/10.1155/2022/3606765
- Delavary, B. M., van der Veer, W. M., van Egmond, M., Niessen, F. B., & Beelen, R. H. (2011). Macrophages in skin injury and repair. Immunobiology, 216(7), 753-762. https://doi.org/10.1002/adma.201804041
- Denzer, B. R., Kulchar, R. J., Huang, R. B., & Patterson, J. (2021). Advanced methods for the characterization of supramolecular hydrogels. Gels, 7(4), 158. https://doi.org/10.3390/polym13132100
- DesJardins-Park, H. E., Gurtner, G. C., Wan, D. C., & Longaker, M. T. (2022). From chronic wounds to scarring: the growing health care burden of under-and over-healing wounds. Advances in wound care, 11(9), 496-510. https://doi.org/10.1111/bjd.21612
- Devey, J. J., Linklater, A., & Kirby, R. (2016). Wounds and bandages. Monitoring and Intervention for the Critically Ill Small Animal: The Rule of 20, 373-387. https://doi.org/10.62754/joe.v3i8.5788
- Duarte, J., Mascarenhas-Melo, F., Pires, P. C., Veiga, F., & Paiva-Santos, A. C. (2024). Multifunctional hydrogels-based therapies for chronic diabetic wound healing. European Polymer Journal, 113026. https://doi.org/10.3390/medicina57101072
- Fang, Y., Han, Y., Yang, L., Kankala, R. K., Wang, S., Chen, A., & Fu, C. (2025). Conductive hydrogels: intelligent dressings for monitoring and healing chronic wounds. Regenerative Biomaterials, 12, rbae127. https://doi.org/10.1038/nrendo.2015.130
- Fani, N., Moradi, M., Zavari, R., Parvizpour, F., Soltani, A., Arabpour, Z., & Jafarian, A. (2024). Current advances in wound healing and regenerative medicine. Current stem cell research & therapy, 19(3), 277-291. https://doi.org/10.1002/dmrr.829
- Farahani, M., & Shafiee, A. (2021). Wound healing: from passive to smart dressings. Advanced Healthcare Materials, 10(16), 2100477. https://doi.org/10.12968/jowc.2016.25.Sup6.S1
- Ferraz, M. P. (2025). Wound Dressing Materials: Bridging Material Science and Clinical Practice. Applied Sciences, 15(4), 1725. https://doi.org/10.1016/j.cnc.2016.09.009
- Firlar, I., Altunbek, M., McCarthy, C., Ramalingam, M., & Camci-Unal, G. (2022). Functional hydrogels for treatment of chronic wounds. Gels, 8(2), 127. 10.1097/PRS.0b013e3182001f0f
- Franks, P. J., Barker, J., Collier, M., Gethin, G., Haesler, E., Jawien, A., Laeuchli, S., Mosti, G., Probst, S., & Weller, C. (2016). Management of patients with venous leg ulcers: challenges and current best practice. Journal of wound care, 25(Sup6), S1-S67. https://doi.org/10.3390/gels10030188
- Froimchuk, E., Carey, S. T., Edwards, C., & Jewell, C. M. (2020). Self-assembly as a molecular strategy to improve immunotherapy. Accounts of chemical research, 53(11), 2534-2545. https://doi.org/10.1146/annurev-bioeng-060418-052422
- Ganji, F., Abdekhodaie, M., & Ramazani SA, A. (2007). Gelation time and degradation rate of chitosan-based injectable hydrogel. Journal of sol-gel science and technology, 42, 47-53. https://doi.org/10.3390/app15041725
- Gao, F., Jiao, C., Yu, B., Cong, H., & Shen, Y. (2021). Preparation and biomedical application of injectable hydrogels. Materials Chemistry Frontiers, 5(13), 4912-4936.10.1039/d4ma01005a
- Gottrup, F., Dissemond, J., Baines, C., Frykberg, R., Jensen, P. Ø., Kot, J., Kröger, K., & Longobardi, P. (2017). Use of oxygen therapies in wound healing: Focus on topical and hyperbaric oxygen treatment. Journal of wound care, 26(Sup5), S1-S43. https://doi.org/10.1016/B978-0-12-819838-4.00012-2
- Hamidi, M., Azadi, A., & Rafiei, P. (2008). Hydrogel nanoparticles in drug delivery. Advanced drug delivery reviews, 60(15), 1638-1649. https://doi.org/10.1016/j.eurpolymj.2024.113260
- Hosseini, A. M., Salim, M. A., Pourfaraziani, P., Jamali, M., Agahi, N., Azizi, A., & Mohammadian, M. (2023). Hydrogel Dressings: Multifunctional Solutions for Chronic Wound Healing; Focusing on In-Vivo Studies. Journal of Lab Animal Research, 2(5), 41-50. https://doi.org/10.1089/wound.2021.0039
- Hu, Y., Yu, L., Dai, Q., Hu, X., & Shen, Y. (2024). Multifunctional antibacterial hydrogels for chronic wound management. Biomaterials science. https://doi.org/10.1007/s13671-020-00319-w
- Jacob, S., Nair, A. B., Shah, J., Sreeharsha, N., Gupta, S., & Shinu, P. (2021). Emerging role of hydrogels in drug delivery systems, tissue engineering and wound management. Pharmaceutics, 13(3), 357. https://doi.org/10.3390/gels8020127
- Jeong, J.-O., Kim, M., Kim, S., Lee, K. K., & Choi, H. (2025). Advanced Hydrogel Systems for Local Anesthetic Delivery: Toward Prolonged and Targeted Pain Relief. Gels, 11(2), 131. https://doi.org/10.2174/1574888X18666230301140659
- Jiang, D., & Scharffetter-Kochanek, K. (2020). Mesenchymal stem cells adaptively respond to environmental cues thereby improving granulation tissue formation and wound healing. Frontiers in Cell and Developmental Biology, 8, 697. https://doi.org/10.2174/1574888X11666160905092513
- Kammona, O., Tsanaktsidou, E., & Kiparissides, C. (2024). Recent developments in 3D-(bio) printed hydrogels as wound dressings. Gels, 10(2), 147. https://doi.org/10.3390/gels11030179
- Kłapcia, A., & Domalik-Pyzik, P. (2025). Hydrogel dressings as insulin delivery systems for diabetic wounds. Frontiers in Bioscience-Elite, 17(1), 26446. https://doi.org/10.1039/D0TB02177F
- Kus, K. J., & Ruiz, E. S. (2020). Wound dressings–a practical review. Current Dermatology Reports, 9, 298-308. https://doi.org/10.3390/gels10040216
- Lee, J. H. (2018). Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering. Biomaterials Research, 22(1), 27. https://doi.org/10.3390/gels10020147
- Liang, Y., He, J., & Guo, B. (2021). Functional hydrogels as wound dressing to enhance wound healing. ACS nano, 15(8), 12687-12722. https://doi.org/10.36502/2019/droa.6152
- Ling, J. K. U., Sam, J. H., Jeevanandam, J., Chan, Y. S., & Nandong, J. (2022). Thermal degradation of antioxidant compounds: Effects of parameters, thermal degradation kinetics, and formulation strategies. Food and Bioprocess Technology, 15(9), 1919-1935. https://doi.org/10.1002/9781119433316.ch4
- Lock, A., Cornish, J., & Musson, D. S. (2019). The role of in vitro immune response assessment for biomaterials. Journal of functional biomaterials, 10(3), 31. https://doi.org/10.12968/jowc.2017.26.Sup5.S1
- Lv, X., Zhang, J., Yang, D., Shao, J., Wang, W., Zhang, Q., & Dong, X. (2020). Recent advances in pH-responsive nanomaterials for anti-infective therapy. Journal of Materials Chemistry B, 8(47), 10700-10711. https://doi.org/10.22377/ijgp.v11i01.870
- Malone, M., & Schultz, G. (2022). Challenges in the diagnosis and management of wound infection. British Journal of Dermatology, 187(2), 159-166. https://doi.org/10.1007/BF02446963
- Mamun, A. A., Shao, C., Geng, P., Wang, S., & Xiao, J. (2024). Recent advances in molecular mechanisms of skin wound healing and its treatments. Frontiers in immunology, 15, 1395479. https://doi.org/10.1007/978-3-319-66990-8_12
- Mancuso, A., Barone, A., Cristiano, M. C., Cianflone, E., Fresta, M., & Paolino, D. (2020). Cardiac stem cell-loaded delivery systems: a new challenge for myocardial tissue regeneration. International Journal of Molecular Sciences, 21(20), 7701. https://doi.org/10.1016/S0733-8635(05)70199-6
- Mills Sr, J. L. (2008). Open bypass and endoluminal therapy: complementary techniques for revascularization in diabetic patients with critical limb ischaemia. Diabetes/metabolism research and reviews, 24(S1), S34-S39. https://doi.org/10.1007/978-3-319-53805-1_86
- Moura, L. I., Dias, A. M., Carvalho, E., & de Sousa, H. C. (2013). Recent advances on the development of wound dressings for diabetic foot ulcer treatment—A review. Acta Biomaterialia, 9(7), 7093-7114. https://doi.org/10.1089/wound.2014.0586
- Muire, P. J., Thompson, M. A., Christy, R. J., & Natesan, S. (2022). Advances in immunomodulation and immune engineering approaches to improve healing of extremity wounds. International Journal of Molecular Sciences, 23(8), 4074. https://doi.org/10.3390/molecules25112699
- Nandhini, J., Karthikeyan, E., Rani, E. E., Karthikha, V., Sanjana, D. S., Jeevitha, H., Rajeshkumar, S., Venugopal, V., & Priyadharshan, A. (2024). Advancing engineered approaches for sustainable wound regeneration and repair: Harnessing the potential of green synthesized silver nanoparticles. Engineered Regeneration, 5(3), 306-325. https://doi.org/10.58803/jlar.v2i5.28
- Naser, M., Nasr, M. M., & Shehata, L. H. (2024). Smart Wound Dressings Integrating Biosensors for Real-Time Monitoring of Wound Conditions. https://doi.org/10.1002/9781118923870.ch21
- Nielsen, L. E. (1969). Cross-linking–effect on physical properties of polymers. Journal of Macromolecular Science, Part C, 3(1), 69-103. https://doi.org/10.3390/bioengineering10091022
- Nouri, K., Rajabi-Estarabadi, A., Zheng, C., Leon, A., Herbst, J. S., Forouzandeh, M., Vazquez, T., Akhtar, S., Kursewicz, C., & Long, J. (2022). Dermatological Surgery. Atlas of Dermatology, Dermatopathology and Venereology: Cutaneous Infectious and Neoplastic Conditions and Procedural Dermatology, 529-563. https://doi.org/10.1002/9781119433316.ch15
- Oliveira, A., Simões, S., Ascenso, A., & Reis, C. P. (2022). Therapeutic advances in wound healing. Journal of Dermatological Treatment, 33(1), 2-22. https://doi.org/10.1016/j.actbio.2013.03.033
- Olteanu, G., Neacșu, S. M., Joița, F. A., Musuc, A. M., Lupu, E. C., Ioniță-Mîndrican, C.-B., Lupuliasa, D., & Mititelu, M. (2024). Advancements in regenerative hydrogels in skin wound treatment: a comprehensive review. International Journal of Molecular Sciences, 25(7), 3849. 10.31083/FBE26446
- Pudlarz, A., & Szemraj, J. (2018). Nanoparticles as carriers of proteins, peptides and other therapeutic molecules. Open life sciences, 13(1), 285-298. https://doi.org/10.1021/acs.biomac.0c01069
- Rana, M. M., & De la Hoz Siegler, H. (2024). Evolution of hybrid hydrogels: Next-generation biomaterials for drug delivery and tissue engineering. Gels, 10(4), 216. https://doi.org/10.1016/j.cej.2021.130843
- Rao, N., Ziran, B. H., & Lipsky, B. A. (2011). Treating osteomyelitis: antibiotics and surgery. Plastic and reconstructive surgery, 127, 177S-187S. https://doi.org/10.1111/wrr.13154
- Rashidi, S. (2017). A review of mechanism of actions of ultrasound waves for treatment of soft tissue injuries. International Journal of Green Pharmacy (IJGP), 11(01). https://doi.org/10.3390/gels8020127
- Revete, A., Aparicio, A., Cisterna, B. A., Revete, J., Luis, L., Ibarra, E., Segura González, E. A., Molino, J., & Reginensi, D. (2022). Advancements in the use of hydrogels for regenerative medicine: properties and biomedical applications. International Journal of Biomaterials, 2022(1), 3606765. https://doi.org/10.1039/D3TB02912C
- Ribeiro, M., Simões, M., Vitorino, C., & Mascarenhas-Melo, F. (2024). Hydrogels in cutaneous wound healing: Insights into characterization, properties, formulation and therapeutic potential. Gels, 10(3), 188. https://doi.org/10.1016/j.heliyon.2024.e24584
- Rodrigues, M., Kosaric, N., Bonham, C. A., & Gurtner, G. C. (2018). Wound healing: a cellular perspective. Physiological reviews. https://doi.org/10.1021/acsomega.2c06806
- Romano, E., Campagnuolo, C., Palladino, R., Schiavo, G., Maglione, B., Luceri, C., & Mennini, N. (2023). Technical evaluation of a new medical device based on rigenase in the treatment of chronic skin lesions. Bioengineering, 10(9), 1022. https://doi.org/10.1093/rb/rbae127
- Roy, A., Manna, K., & Pal, S. (2022). Recent advances in various stimuli-responsive hydrogels: From synthetic designs to emerging healthcare applications. Materials Chemistry Frontiers, 6(17), 2338-2385. https://doi.org/10.1002/adhm.202400513
- Ruke, M., & Savai, J. (2019). Diabetic foot infection, biofilm & new management strategy. Diabetes Research: Open Access, 2019(1), 7. https://doi.org/10.3390/pharmaceutics13030357
- Saberian, M., & Abak, N. (2024). Hydrogel-mediated delivery of platelet-derived exosomes: Innovations in tissue engineering. Heliyon, 10(2). https://doi.org/10.1016/j.eurpolymj.2024.113026
- Saberian, M., Roudsari, R. S., Haghshenas, N., Rousta, A., & Alizadeh, S. (2024). How the combination of alginate and chitosan can fabricate a hydrogel with favorable properties for wound healing. Heliyon, 10(11). https://ijpsat.org/
- Sanin, L., Mathew, N., Bellmeyer, L., & Ali, S. (1994). The International Headache Society (IHS) headache classification as applied to a headache clinic population. Cephalalgia, 14(6), 443-446. https://doi.org/10.1039/D4BM00155A
- Sankar, S., & Muthukaliannan, G. K. (2024). Deciphering the crosstalk between inflammation and biofilm in chronic wound healing: Phytocompounds loaded bionanomaterials as therapeutics. Saudi Journal of Biological Sciences, 103963. https://www.mdpi.com/1422-0067/25/7/3849#
- Sheng, L., Zhang, Z., Zhang, Y., Wang, E., Ma, B., Xu, Q., Ma, L., Zhang, M., Pei, G., & Chang, J. (2021). A novel “hot spring”-mimetic hydrogel with excellent angiogenic properties for chronic wound healing. Biomaterials, 264, 120414. https://doi.org/10.1016/j.engreg.2024.06.004
- Solanki, D., Vinchhi, P., & Patel, M. M. (2023). Design considerations, formulation approaches, and strategic advances of hydrogel dressings for chronic wound management. ACS omega, 8(9), 8172-8189. https://doi.org/10.1039/C9TB01398A
- Song, H., Hao, D., Zhou, J., Farmer, D., & Wang, A. (2024). Development of pro‐angiogenic skin substitutes for wound healing. Wound repair and regeneration, 32(3), 208-216. https://doi.org/10.1039/D1QM00489A
- Song, R., Murphy, M., Li, C., Ting, K., Soo, C., & Zheng, Z. (2018). Current development of biodegradable polymeric materials for biomedical applications. Drug design, development and therapy, 3117-3145.10.1186/s40824-018-0138-6
- Stoica, A. E., Chircov, C., & Grumezescu, A. M. (2020). Nanomaterials for wound dressings: an up-to-date overview. Molecules, 25(11), 2699. https://doi.org/10.1021/acs.accounts.0c00438
- Strodtbeck, F. (2001). Physiology of wound healing. Newborn and infant nursing reviews, 1(1), 43-52. https://doi.org/10.1046/j.1468-2982.1994.1406443.x
- Sun, C., Zeng, X., Zheng, S., Wang, Y., Li, Z., Zhang, H., Nie, L., Zhang, Y., Zhao, Y., & Yang, X. (2022). Bio-adhesive catechol-modified chitosan wound healing hydrogel dressings through glow discharge plasma technique. Chemical Engineering Journal, 427, 130843. https://doi.org/10.1007/978-3-031-79062-1_6
- Valencia, I. C., Falabella, A. F., & Eaglstein, W. H. (2000). Skin grafting. Dermatologic clinics, 18(3), 521-532. https://doi.org/10.3390/gels7040158
- Vathulya, M., Chattopadhyay, D., Kandwal, P., Nath, U. K., Kapoor, A., & Sinha, M. (2023). Adipose Tissue in Peripheral Obesity as an Assessment Factor for Pressure Ulcers. Advances in wound care, 12(9), 513-528. https://doi.org/10.1007/s11947-022-02797-1
- Vinchhi, P., Rawal, S. U., & Patel, M. M. (2021). Biodegradable hydrogels. In Drug delivery devices and therapeutic systems (pp. 395-419). Elsevier. https://doi.org/10.1007/s10971-006-9007-1
- Vodovnik, L., & Karba, R. (1992). Treatment of chronic wounds by means of electric and electromagnetic fields part 1 literature review. Medical and Biological Engineering and Computing, 30, 257-266. https://doi.org/10.1021/acs.chemrev.3c00498
- Xu, C., Chen, Y., Zhao, S., Li, D., Tang, X., Zhang, H., Huang, J., Guo, Z., & Liu, W. (2024). Mechanical Regulation of Polymer Gels. Chemical reviews, 124(18), 10435-10508. https://doi.org/10.1080/15583726908545897
- Xu, Z., Han, S., Gu, Z., & Wu, J. (2020). Advances and impact of antioxidant hydrogel in chronic wound healing. Advanced Healthcare Materials, 9(5), 1901502. https://doi.org/10.1515/biol-2018-0035
- Yadav, R., Kumar, R., Kathpalia, M., Ahmed, B., Dua, K., Gulati, M., Singh, S., Singh, P. J., Kumar, S., & Shah, R. M. (2024). Innovative approaches to wound healing: insights into interactive dressings and future directions. Journal of Materials Chemistry B, 12(33), 7977-8006. https://doi.org/10.3390/gels11020131
- Yi, S., Ding, F., Gong, L., & Gu, X. (2017). Extracellular matrix scaffolds for tissue engineering and regenerative medicine. Current stem cell research & therapy, 12(3), 233-246. rg/10.1016/j.biomaterials.2011.05.078
- Young, S. A., Riahinezhad, H., & Amsden, B. G. (2019). In situ-forming, mechanically resilient hydrogels for cell delivery. Journal of Materials Chemistry B, 7(38), 5742-5761. https://doi.org/10.1007/978-3-319-45433-7_2
- Yousif, D., Yousif, Z., & Joseph, P. (2024). Diabetic Foot Ulcer Neuropathy, Impaired Vasculature, and Immune Responses. In Diabetic Foot Ulcers-Pathogenesis, Innovative Treatments and AI Applications. IntechOpen. https://doi.org/10.1021/acs.chemrev.0c01177
- Zhang, L., Liu, M., Zhang, Y., & Pei, R. (2020). Recent progress of highly adhesive hydrogels as wound dressings. Biomacromolecules, 21(10), 3966-3983. https://doi.org/10.1007/s10856-020-06401-w
- Zhang, W., Liu, L., Cheng, H., Zhu, J., Li, X., Ye, S., & Li, X. (2024). Hydrogel-based dressings designed to facilitate wound healing. Materials Advances, 5(4), 1364-1394. https://doi.org/10.2147/DDDT.S165440
- Zhang, X., Tan, B., Wu, Y., Zhang, M., & Liao, J. (2021). A review on hydrogels with photothermal effect in wound healing and bone tissue engineering. Polymers, 13(13), 2100. https://doi.org/10.3390/ijms21207701
- Zhao, R., Liang, H., Clarke, E., Jackson, C., & Xue, M. (2016). Inflammation in chronic wounds. International Journal of Molecular Sciences, 17(12), 2085. https://doi.org/10.1016/j.addr.2008.08.002
How to Cite
Himanshu Sharma, Sanchit Dhankhar, Vishnu Mittal, Balraj Saini, Pooja Mittal, and Akashdeep Singh. Hydrogels in Chronic Wound Care: A Multifaceted Approach to Healing and Regeneration.
J. Pharm. Technol. Res. Manag.. 2025, 13, 1-19