Transferosomes: A Promising Drug Delivery Tool in Neurodegenerative Disorders

Published: November 20, 2024

Authors

Neha Kanojia, Jatin Kumar, Aruna Sharma, and Amit Chaudhary

Keywords
Transferosomes, Neurogenerative disorders, Nanomedicine, Depression, Brain delivery

Abstract

Background: Globally, neurodegenerative diseases (NDs) are complicated, progressive, and frequently lethal conditions that greatly increase mortality and disability. Because there are currently no effective treatments for conditions including Parkinson’s disease, Alzheimer’s disease, and numerous psychiatric diseases (such as depression, anxiety, bipolar disorder, and schizophrenia), these conditions continue to present significant healthcare issues. The blood-brain barrier (BBB), a highly selective membrane that prevents therapeutic medicines from entering the central nervous system (CNS), is a crucial obstacle in the development of effective treatments. Due to the poor brain bioavailability of conventional drug delivery systems, novel approaches are required to improve medication penetration and efficacy.

Purpose: This review examines the possibilities of nanocarrier-based systems, especially transferosomes; this review seeks to solve the shortcomings of traditional drug delivery techniques in the treatment of NDs. These ultra-deformable vesicles have demonstrated potential in overcoming BBB restrictions, boosting the distribution of neuroprotective medications to the brain, and enhancing therapeutic results.

Methods: The review summarizes the results of current studies on medication delivery systems based on transferosomes in relation to mental and neurodegenerative diseases. It reviews preclinical research on animal models, emphasizing enhancements in cognitive performance, locomotor activity, cerebral bioavailability, and biochemical indicators, including neurotransmitter levels and oxidative stress.

Conclusion: A promising development in medicine delivery for NDs driven by nanotechnology is transferosomes. They are a strong contender to replace conventional drug delivery techniques because of their capacity to increase brain bioavailability, reduce systemic side effects, and boost therapeutic efficacy. Preclinical research suggests that this relatively new method has great promise for treating a range of mental and neurodegenerative diseases. To prove transferosomes as a practical method for enhancing CNS medication distribution and patient outcomes, future studies should concentrate on refining formulations, carrying out comprehensive clinical trials, and resolving regulatory issues.

References

  • AbouElhassan, K. M., Sarhan, H. A., Hussein, A. K., Taye, A., Ahmed, Y. M., & Safwat, M. A. (2022). Brain targeting of citicoline sodium via hyaluronic acid-decorated novel nano-transbilosomes for mitigation of Alzheimer’s disease in a rat model: formulation, optimization, in vitro and in vivo assessment. International Journal of Nanomedicine, 17, 6347.
  • Ahmed, A., Ahmad, R., Jangir, S., & Sharma, D. (2025). Current Development and Application on Inclusion of Herbal Phytochemicals in Novel Herbal Drug Delivery System. The Natural Products Journal, 15(1), E250324228308.  https://doi.org/10.2174/0122103155281428240320091344
  • Alhowyan, A., Imran, M., Haque, A., & Kalam, M. A. (2024). Surface-engineered Niosomes of Esculin Hydrate for the management of depression via intranasal route: Optimization, In vitro, Ex vivo and pharmacokinetic assessment. Journal of Drug Delivery Science and Technology, 102, 106417. https://doi.org/10.1016/j.jddst.2024.106417
  • Aljabali, A. A., El-Tanani, M., & Tambuwala, M. M. (2024). Principles of CRISPR-Cas9 technology: Advancements in genome editing and emerging trends in drug delivery. Journal of Drug Delivery Science and Technology, 92, 105338. https://doi.org/10.1016/j.jddst.2024.105338
  • Alonso, M., Petit, A. C., & Lledo, P. M. (2024). The impact of adult neurogenesis on affective functions: of mice and men. Molecular Psychiatry, 29(8), 2527-2542. https://doi.org/10.1038/s41380-024-02504-w
  • Alsaidan, O. A., Elkomy, M. H., Zaki, R. M., Tulbah, A. S., Yusif, R. M., & Eid, H. M. (2024). Brain targeting of venlafaxine via intranasal transbilosomesthermogel for improved management of depressive disorder. Journal of Pharmaceutical Sciences, 113(11), 3304-3314. https://doi.org/10.1016/j.xphs.2024.08.026
  • Arias, J. J. A. I. (Ed.). (2021). Frontiers in Clinical Drug Research–Dementia: Volume 2 (Vol. 2). Bentham Science Publishers. https://doi.org/10.2174/9789815039474121020001
  • Ashok, A., Andrabi, S. S., Mansoor, S., Kuang, Y., Kwon, B. K., & Labhasetwar, V. (2022). Antioxidant therapy in oxidative stress-induced neurodegenerative diseases: Role of nanoparticle-based drug delivery systems in clinical translation. Antioxidants, 11(2), 408.  https://doi.org/10.3390/antiox11020408
  • Bayas, A., Christ, M., Faissner, S., Klehmet, J., Pul, R., Skripuletz, T., & Meuth, S. G. (2023). Disease-modifying therapies for relapsing/active secondary progressive multiple sclerosis–a review of population-specific evidence from randomized clinical trials. Therapeutic Advances in Neurological Disorders, 16, 17562864221146836. https://doi.org/10.1177/17562864221146836
  • Bis, J. C., Jian, X., Kunkle, B. W., Chen, Y., Hamilton-Nelson, K. L., Bush, W. S., … & Farrer, L. A. (2020). Whole exome sequencing study identifies novel rare and common Alzheimer’s-Associated variants involved in immune response and transcriptional regulation. Molecular psychiatry, 25(8), 1859-1875. https://doi.org/10.1038/s41380-018-0112-7
  • Cardoso, C. V., de Barros, M. P., Bachi, A. L. L., Bernardi, M. M., Kirsten, T. B., Martins, M. D. F. M., … &Bondan, E. F. (2020). Chemobrain in rats: Behavioral, morphological, oxidative and inflammatory effects of doxorubicin administration. Behavioural brain research, 378, 112233. https://doi.org/10.1016/j.bbr.2019.112233
  • Çelik, H., Kucukler, S., Çomaklı, S., Caglayan, C., Özdemir, S., Yardım, A., Karaman, M., & Kandemir, F. M. (2020). Neuroprotective effect of chrysin on isoniazid-induced neurotoxicity via suppression of oxidative stress, inflammation and apoptosis in rats. Neurotoxicology, 81, 197-208. https://doi.org/10.1016/j.neuro.2020.10.009
  • Cenko, B., Ozgo, E., Rapaport, P., & Mukadam, N. (2021). Prevalence of dementia in older adults in Central and Eastern Europe: a systematic review and meta-analysis. Psychiatry International, 2(2), 191-210.  https://doi.org/10.3390/psychiatryint2020015
  • Chen, G., Wang, X., Li, J., Xu, Y., Lin, Y., & Wang, F. (2024). Intelligent hydrogels for treating malignant melanoma. Engineered Regeneration. https://doi.org/10.1016/j.engreg.2024.05.004
  • Chen, R. P., Chavda, V. P., Patel, A. B., & Chen, Z. S. (2022). Phytochemical delivery through transferosome (phytosome): an advanced transdermal drug delivery for complementary medicines. Frontiers in pharmacology, 13, 850862. https://doi .org/10.3389/fphar.2022.850862
  • Cheng, Z., Kandekar, U., Ma, X., Bhabad, V., Pandit, A., Liu, L., Luo, J., Munot, M., Chorage, T., Patil, A., & Tao, L. (2024). Optimizing fluconazole-embedded transfersomal gel for enhanced antifungal activity and compatibility studies. Frontiers in pharmacology, 15, 1353791. https://doi.org/10.3389/fphar.2024.1353791
  • Chopra, H., Bibi, S., Singh, I., Kamal, M.A., Islam, F., Alhumaydhi, F.A., Emran, T.B. & Cavalu, S. (2022). Nanomedicines in the management of Alzheimer’s disease: current view and future prospects. Frontiers in Aging Neuroscience, 14, 879114. https://doi.org/10.3389/fnagi.2022.879114
  • Cree, B. A., Arnold, D. L., Chataway, J., Chitnis, T., Fox, R. J., Pozo Ramajo, A., Murphy, M., & Lassmann, H. (2021). Secondary progressive multiple sclerosis: new insights, 8, 378-388. https://doi.org/10.1212/WNL.0000000000012323
  • Cullinane, P. W., Wrigley, S., Parmera, J. B., Valerio, F., Millner, T. O., Shaw, K., Pablo Fernandez, E.D., Warner, T.T., & Jaunmuktane, Z. (2024). Pathology of neurodegenerative disease for the general neurologist. Practical Neurology, 24(3), 188-199. https://doi.org/10.1136/pn-2023-003988
  • De Oliveira, M. P. B., Dos Reis, L. M., & Pereira, N. D. (2021). Effect of resistance exercise on body structure and function, activity, and participation in individuals with Parkinson disease: a systematic review. Archives of Physical Medicine and Rehabilitation, 102(10), 1998-2011. https://doi.org/10.1016/j.apmr.2021.01.081
  • DeSeze, J., & Bigaut, K. (2021). Multiple sclerosis diagnostic criteria: From poser to the 2017 revised McDonald criteria. La Presse Médicale, 50(2), 104089.  https://doi.org/10.10 16/j.lpm.2021.104089
  • Dudhipala, N., Phasha Mohammed, R., Adel Ali Youssef, A., & Banala, N. (2020). Effect of lipid and edge activator concentration on development of aceclofenac-loaded transfersomes gel for transdermal application: in vitro and ex vivo skin permeation. Drug development and industrial pharmacy, 46(8), 1334-1344. https://doi.org/10.1080/03639045.2020.1788069
  • El Sisi, A. M., Eissa, E. M., Hassan, A. H., Bekhet, M. A., El-Ela, F. I. A., Roh, E. J., & Ali, A. A. (2025). Nose-to-Brain Delivery of Chitosan-Grafted Leciplexes for Promoting the Bioavailability and Antidepressant Efficacy of Mirtazapine: In Vitro Assessment and Animal Studies. Pharmaceuticals, 18(1), 46. https://doi.org/10.3390/ph18010046
  • Elkomy, M. H., Zaki, R. M., Alsaidan, O. A., Elmowafy, M., Zafar, A., Shalaby, K., Abdelgawad, M.A., Abo El-Ela, F, I., Rateb, M.E., Naguib, I. A., & Eid, H. M. (2023). Intranasal nanotransferosomal gel for quercetin brain targeting: I. optimization, characterization, brain localization, and cytotoxic studies. Pharmaceutics, 15(7), 1805.  https://doi.org/10.3390/pharmaceutics15071805
  • ElShagea, H. N., Makar, R. R., Salama, A. H., Elkasabgy, N. A., & Basalious, E. B. (2023). Investigating the targeting power to brain tissues of intranasal rasagiline mesylate-loaded transferosomal in situ gel for efficient treatment of Parkinson’s disease. Pharmaceutics, 15(2), 533.  https://doi.org/10.3390/pharmaceutics15020533
  • Feldman, E. L., Goutman, S. A., Petri, S., Mazzini, L., Savelieff, M. G., Shaw, P. J., & Sobue, G. (2022). Amyotrophic lateral sclerosis. The Lancet, 400(10360), 1363-1380. https://doi.org/10.1016/S0140-6736(22)01272-7
  • Gugleva, V., Michailova, V., Mihaylova, R., Momekov, G., Zaharieva, M. M., Najdenski, H., Petrov, P., Rangelov, S., Forys, A., Trzebicka, B.,  & Momekova, D. (2022). Formulation and evaluation of hybrid niosomal in situ gel for intravesical co-delivery of curcumin and gentamicin sulfate. Pharmaceutics, 14(4), 747. https://doi.org/10.3390/pharmaceutics14040747
  • Hinge, N. S., Kathuria, H., & Pandey, M. M. (2022). Engineering of structural and functional properties of nanotherapeutics and nanodiagnostics for intranasal brain targeting in Alzheimer’s. Applied Materials Today, 26, 101303. https://doi.org/10.1016/j.apmt.2021.101303
  • Ibrahim, S. S., Elseoud, O. G. A., Mohamedy, M. H., Amer, M. M., Mohamed, Y. Y., Elmansy, S. A., Kadry, M.M., Attia, A.A., Fanous, R.A., Kamel, M.S., Solyman, Y.A., Shehata, MS.,  & George, M. Y. (2021). Nose-to-brain delivery of chrysin transfersomal and composite vesicles in doxorubicin-induced cognitive impairment in rats: Insights on formulation, oxidative stress and TLR4/NF-kB/NLRP3 pathways. Neuropharmacology, 197, 108738. https://doi.org/10.1016/j.neuropharm.2021.108738
  • Irwin, K. E., Sheth, U., Wong, P. C., & Gendron, T. F. (2024). Fluid biomarkers for amyotrophic lateral sclerosis: a review. Molecular neurodegeneration, 19(1), 9. https://doi.org/10.1186/s13024-023-00685-6
  • Jellinger, K. A. (2024). The pathobiology of depression in Huntington’s disease: an unresolved puzzle. Journal of Neural Transmission, 131(12), 1511-1522. https://doi.org/10.1007/s00702-024-02750-w
  • Ji, L. L., Yeo, D., Kang, C., & Zhang, T. (2020). The role of mitochondria in redox signaling of muscle homeostasis. Journal of Sport and Health Science, 9(5), 386-393. https://doi.org/10.1016/j.jshs.2020.01.001
  • Josephine Boder, E., & Banerjee, I. A. (2021). Alzheimer’s disease: Current perspectives and advances in physiological modeling. Bioengineering, 8(12), 211.  https://doi.org/10.3390/bioengineering8120211
  • Kammoun, A. K., Khedr, A., Hegazy, M. A., Almalki, A. J., Hosny, K. M., Abualsunun, W. A., & Bakhaidar, R. B. (2021). Formulation, optimization, and nephrotoxicity evaluation of an antifungal in situ nasal gel loaded with voriconazole‒clove oil transferosomal nanoparticles. Drug Delivery, 28(1), 2229-2240. https://doi.org/10.1080/10717544.2021.1992040
  • Kaurav, H., Tripathi, M., Kaur, S. D., Bansal, A., Kapoor, D. N., & Sheth, S. (2024). Emerging trends in bilosomes as therapeutic drug delivery systems. Pharmaceutics, 16(6), 697.  https://doi.org/10.3390/pharmaceutics16060697
  • Khope, R. G., Gotmare, S. C., Dhoble, N. N., Padole, N. N., Dhapke, P., & Baheti, J. R. (2024). Intranasal drug delivery: A non-invasive method for improving neurotherapeutic delivery. Asian Journal of Pharmaceutical Research, 14(1), 53-61. https://doi.org/10.52711/2231-5691.2024.00008
  • Kiernan, M. C., Vucic, S., Talbot, K., McDermott, C. J., Hardiman, O., Shefner, J. M., Al-Chalabi, A., Huynh, W., Cudkowiz, M., Talman, P., Van Den Berg, L.,  Dharamdasa, T., Wicks, P., Reilly, C., & Turner, M. R. (2021). Improving clinical trial outcomes in amyotrophic lateral sclerosis. Nature Reviews Neurology, 17(2), 104-118. https://doi.org/10.1038/s41582-020-00434-z
  • Langasco, R., Fancello, S., Rassu, G., Cossu, M., Cavalli, R., Galleri, G., Giunchedi, P., Migheli, R., & Gavini, E. (2019). Increasing protective activity of genistein by loading into transfersomes: a new potential adjuvant in the oxidative stress-related neurodegenerative diseases. Phytomedicine, 52, 23-31. https://doi.org/10.1016/j.phymed.2018.09.207
  • Li, Y., Wang, J., Vora, L. K., Sabri, A. H. B., McGuckin, M. B., Paredes, A. J., & Donnelly, R. F. (2024). Dissolving microarray patches loaded with a rotigotine nanosuspension: A potential alternative to Nepro patch. Journal of Controlled Release, 372, 304-317. https://doi.org/10.1016/j.jconrel.2024.06.039
  • Liu, H., Hu, Y., Zhang, Y., Zhang, H., Gao, S., Wang, L., Wang, T., Han, Z., Sun, B., & Liu, G. (2022). Mendelian randomization highlights significant difference and genetic heterogeneity in clinically diagnosed Alzheimer’s disease GWAS and self-report proxy phenotype GWAX. Alzheimer’s Research & Therapy, 14(1), 17. https://doi.org/10.1186/s13195-022-00963-3
  • López-Muguruza, E., & Matute, C. (2023). Alterations of oligodendrocyte and myelin energy metabolism in multiple sclerosis. International Journal of Molecular Sciences, 24(16), 12912. https://doi.org/10.3390/ijms241612912
  • Masrori, P., & Van Damme, P. (2020). Amyotrophic lateral sclerosis: a clinical review. European Journal of Neurology, 27(10), 1918-1929. https://doi.org/10.1111/ene.14393
  • Matharoo, N., Mohd, H., & Michniak‐Kohn, B. (2024). Transferosomes as a transdermal drug delivery system: Dermal kinetics and recent developments. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 16(1), e1918. https://doi.org/10.1002/wnan.1918
  • Mead, R. J., Shan, N., Reiser, H. J., Marshall, F., & Shaw, P. J. (2023). Amyotrophic lateral sclerosis: a neurodegenerative disorder poised for successful therapeutic translation. Nature Reviews Drug Discovery, 22(3), 185-212. https://doi.org/10.1038/s41573-022-00612-2
  • Merlin, J. J., & Abrahamse, H. (2024). Optimizing CRISPR/Cas9 precision: Mitigating off-target effects for safe integration with photodynamic and stem cell therapies in cancer treatment. Biomedicine & Pharmacotherapy, 180, 117516. https://doi.org/10.1016/j.biopha.2024.117516
  • Minakhina, S., Kim, S. Y., & Wondisford, F. E. (2024). Regulation of hypothalamic reactive oxygen species and feeding behavior by phosphorylation of the beta 2 thyroid hormone receptor isoform. Scientific Reports, 14(1), 7200. https://doi.org/10.1038/s41598-024-57364-9
  • Mishra, G., Awasthi, R., Singh, A. K., Singh, S., Mishra, S. K., Singh, S. K., & Nandi, M. K. (2022). Intranasally co-administered berberine and curcumin loaded in transfersomal vesicles improved inhibition of amyloid formation and BACE-1. ACS Omega, 7(47), 43290-43305. https://doi.org/10.1021/acsomega.2c06215
  • Misra, S. K., & Pathak, K. (2023). Nose-to-brain targeting via nanoemulsion: significance and evidence. Colloids and Interfaces, 7(1), 23. https://doi.org/10.3390/colloids7010023
  • Morris, H. R., Spillantini, M. G., Sue, C. M., & Williams-Gray, C. H. (2024). The pathogenesis of Parkinson’s disease. The Lancet, 403(10423), 293-304. https://doi.org/10.1016/S0140-6736(23)01478-2
  • Mursal, M., Kumar, A., Hasan, S. M., Hussain, S., Singh, K., Kushwaha, S. P., Arif, M., Singh, R.K., Singh, D., Mohammad, A., & Fatima, S. K. (2024). Role of natural bioactive compounds in the management of neurodegenerative disorders. Intelligent Pharmacy, 2(1), 102-113. https://doi.org/10.1016/j.ipha.2023.09.006
  • Niazi, S. K. (2023). Non-invasive drug delivery across the blood–brain barrier: a prospective analysis. Pharmaceutics, 15(11), 2599. https://doi.org/10.3390/pharmaceutics15112599
  • Nojoki, F., Ebrahimi-Hosseinzadeh, B., Hatamian-Zarmi, A., Khodagholi, F., & Khezri, K. (2022). Design and development of chitosan-insulin-transfersomes (Transfersulin) as effective intranasal nanovesicles for the treatment of Alzheimer’s disease. Biomedicine & Pharmacotherapy, 153, 113450. https://doi.org/10.1016/j.biopha.2022.113450
  • Oosterloo, M., de Greef, B. T., Bijlsma, E. K., Durr, A., Tabrizi, S. J., Estevez‐Fraga, C., & Roos, R. A. (2021). Disease onset in Huntington’s disease: When is the conversion? Movement Disorders Clinical Practice, 8(3), 352-360. https://doi.org/10.1002/mdc3.13148
  • Opatha, S. A. T., Titapiwatanakun, V., & Chutoprapat, R. (2020). Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery. Pharmaceutics, 12(9), 855. https://doi.org/10.3390/pharmaceutics12090855
  • Pekdemir, B., Raposo, A., Saraiva, A., Lima, M. J., Alsharari, Z. D., BinMowyna, M. N., & Karav, S. (2024). Mechanisms and potential benefits of neuroprotective agents in neurological health. Nutrients, 16(24), 4368. https://doi.org/10.3390/nu16244368
  • Portaccio, E., Magyari, M., Havrdova, E. K., Ruet, A., Brochet, B., Scalfari, A., Fillipo, M.D., Tur, M., Montalban, X.,  & Amato, M. P. (2024). Multiple sclerosis: Emerging epidemiological trends and redefining the clinical course. The Lancet Regional Health – Europe, 44. https://doi.org/10.1016/j.lanepe.2024.100977
  • Pozo-Pérez, L., Tornero-Esteban, P., & López-Bran, E. (2024). Clinical and preclinical approach in AGA treatment: A review of current and new therapies in the regenerative field. Stem Cell Research & Therapy, 15(1), 260. https://doi.org/10.1186/s13287-024-03801-5
  • Puengel, T., Liu, H., Guillot, A., Heymann, F., Tacke, F., & Peiseler, M. (2022). Nuclear receptors linking metabolism, inflammation, and fibrosis in nonalcoholic fatty liver disease. International Journal of Molecular Sciences, 23(5), 2668. https://doi.org/10.3390/ijms23052668
  • Ramli, N. Z., Yahaya, M. F., Tooyama, I., & Damanhuri, H. A. (2020). A mechanistic evaluation of antioxidant nutraceuticals on their potential against age-associated neurodegenerative diseases. Antioxidants, 9(10), 1019. https://doi.org/10.3390/antiox9101019
  • Raschka, T., Li, Z., Gaßner, H., Kohl, Z., Jukic, J., Marxreiter, F., & Fröhlich, H. (2024). Unraveling progression subtypes in people with Huntington’s disease. EPMA Journal, 15(2), 275-287. https://doi.org/10.1007/s13167-024-00368-2
  • Riccardi, D., Baldino, L., & Reverchon, E. (2024). Liposomes, transfersomes, and niosomes: Production methods and their applications in the vaccinal field. Journal of Translational Medicine, 22(1), 339. https://doi.org/10.1186/s12967-024-05160-4
  • Rizea, R. E., Corlatescu, A. D., Costin, H. P., Dumitru, A., & Ciurea, A. V. (2024). Understanding amyotrophic lateral sclerosis: Pathophysiology, diagnosis, and therapeutic advances. International Journal of Molecular Sciences, 25(18), 9966. https://doi.org/10.3390/ijms25189966
  • Roodveldt, C., Bernardino, L., Oztop-Cakmak, O., Dragic, M., Fladmark, K. E., Ertan, S., & Romero-Ramos, M. (2024). The immune system in Parkinson’s disease: What we know so far. Brain, 147(10), 3306-3324. https://doi.org/10.1093/brain/awae177
  • Rosenberry, T. L., Zhou, H. X., Stagg, S. M., & Paravastu, A. K. (2022). Oligomer formation by amyloid-β42 in a membrane-mimicking environment in Alzheimer’s disease. Molecules, 27(24), 8804. https://doi.org/10.3390/molecules27248804
  • Sahu, N., Alam, P., Ali, A., Kumar, N., Tyagi, R., Madan, S., Walia, M., & Saxena, S. (2024). Optimization, in vitro and ex vivo assessment of nanotransferosome gels infused with a methanolic extract of Solanum xanthocarpum for the topical treatment of psoriasis. Gels, 10(2), 119. https://doi.org/10.3390/gels10020119
  • Sakai, K., Nishimoto, S., Hirai, Y., Arakawa, K., Akamatsu, M., Tanaka, K., Suzuki, T., & Sakai, H. (2023). Effects of counterion on the formation and hydration behavior of α-form hydrated crystals (α-Gels). Gels, 9(12), 928. https://doi.org/10.3390/gels9120928
  • Salem, H. F., Kharshoum, R. M., Abou-Taleb, H. A., & Naguib, D. M. (2019). Nanosized transferosome-based intranasal in situ gel for brain targeting of resveratrol: Formulation, optimization, in vitro evaluation, and in vivo pharmacokinetic study. AAPS PharmSciTech, 20(1), 1-14. https://doi.org/10.1208/s12249-019-1353-8
  • Stoker, T. B., Mason, S. L., Greenland, J. C., Holden, S. T., Santini, H., & Barker, R. A. (2022). Huntington’s disease: Diagnosis and management. Practical Neurology, 22(1), 32-41. https://doi.org/10.1136/practneurol-2021-003074
  • Tabrizi, S. J., Flower, M. D., Ross, C. A., & Wild, E. J. (2020). Huntington disease: New insights into molecular pathogenesis and therapeutic opportunities. Nature Reviews Neurology, 16(10), 529-546. https://doi.org/10.1038/s41582-020-0389-4
  • Tan, J., Duan, X., Zhang, F., Ban, X., Mao, J., Cao, M., Han, S., Shuai, X., & Shen, J. (2020). Theranostic nanomedicine for synergistic chemodynamic therapy and chemotherapy of orthotopic glioma. Advanced Science, 7(24), 2003036. https://doi.org/10.1002/advs.202003036
  • Tan, M. S., Yang, Y. X., Xu, W., Wang, H. F., Tan, L., Zuo, C. T., Dong, Q., Tan, L., Suckling, J., Yu, J.T., & Alzheimer’s Disease Neuroimaging Initiative. (2021). Associations of Alzheimer’s disease risk variants with gene expression, amyloidosis, tauopathy, and neurodegeneration. Alzheimer’s Research & Therapy, 13, 1-11. https://doi.org/10.1186/s13195-020-00755-7
  • Tekade, A., Susar, R., Kulkarni, G., Surwade, S., & Gaikwad, A. (2024). Nanostructured lipid carriers of donepezil hydrochloride for the treatment of Alzheimer’s disease. Current Alzheimer Research. https://doi.org/10.2174/0115672050288659240229080535
  • Tomar, S., Yadav, R. K., Shah, K., & Dewangan, H. K. (2024). A comprehensive review on carrier-mediated nose-to-brain targeting: Emphasis on molecular targets, current trends, future prospects, and challenges. International Journal of Polymeric Materials and Polymeric Biomaterials, 73(2), 91-103. https://doi.org/10.1080/00914037.2022.2124255
  • Wu, P. S., Li, Y. S., Kuo, Y. C., Tsai, S. J. J., & Lin, C. C. (2019). Preparation and evaluation of novel transfersomes combined with the natural antioxidant resveratrol. Molecules, 24(3), 600. https://doi.org/10.3390/molecules24030600
  • Yazdani, S., Seitz, C., Cui, C., Lovik, A., Pan, L., Piehl, F., … & Fang, F. (2022). T cell responses at diagnosis of amyotrophic lateral sclerosis predict disease progression. Nature Communications, 13(1), 6733. https://doi.org/10.1038/s41467-022-34526-9
  • Yourdkhani, A., Esfandyari-Manesh, M., Ranjbaran, P., Amani, M., & Dinarvand, R. (2024). Recent progress in topical and transdermal approaches for melanoma treatment. Drug Delivery and Translational Research, 1-39. https://doi.org/10.1007/s13346-024-01738-z
  • Zarenezhad, E., Saleh, R. O., Osanloo, M., Iraji, A., Dehghan, A., Marzi, M., & Ghasemian, A. (2024). Nanoniosomes: Preparation, characterization, and insights into the skin cancer therapy (a review). Russian Journal of Bioorganic Chemistry, 50(3), 855-869. https://doi.org/10.1134/S1068162024030348
  • Zarkali, A., Thomas, G. E., Zetterberg, H., & Weil, R. S. (2024). Neuroimaging and fluid biomarkers in Parkinson’s disease in an era of targeted interventions. Nature Communications, 15(1), 5661. https://doi.org/10.1038/s41467-024-49949-9
  • Zhang, B., Pan, C., Feng, C., Yan, C., Yu, Y., Chen, Z., Guo, C., & Wang, X. (2022). Role of mitochondrial reactive oxygen species in homeostasis regulation. Redox Report, 27(1), 45-52. https://doi.org/10.1080/13510002.2022.2046423
  • Zhang, Q., Shi, M., Zhang, J., Yin, X., Chen, Y., Wang, X., & Zhang, Y. (2024). Association between physical activity and Parkinson’s disease: A prospective cohort study. Neuroepidemiology, 22, 1-8. https://doi.org/10.1159/000540397
  • Zhu, J., Cui, Y., Zhang, J., Yan, R., Su, D., Zhao, D., Wang, A., & Feng, T. (2024). Temporal trends in the prevalence of Parkinson’s disease from 1980 to 2023: A systematic review and meta-analysis. The Lancet Healthy Longevity, 5(7), e464-e479. https://doi.org/10.1016/S2666-7568(24)00094-1
  • Ziehr, B. K., & MacDonald, J. A. (2024). Regulation of NLRPs by reactive oxygen species: A story of crosstalk. Biochimica et Biophysica Acta (BBA) – Molecular Cell Research, 119823. https://doi.org/10.1016/j.bbamcr.2024.119823

How to Cite

Neha Kanojia, Jatin Kumar, Aruna Sharma, and Amit Chaudhary. Transferosomes: A Promising Drug Delivery Tool in Neurodegenerative Disorders. J. Pharm. Technol. Res. Manag.. 2024, 12, 50-64
Transferosomes: A Promising Drug Delivery Tool in Neurodegenerative Disorders

Current Issue

PeriodicityBiannually
Issue-1May
Issue-2November
ISSN Print2321-2217
ISSN Online2321-2225
RNI No.CHAENG/2013/50088
OA Policy

Publisher's policy of the journal at Sherpa UK for the submitted, accepted, and published articles. Click OAPolicy

Plan-S Compliance

To check compliance, one has to use the Journal Check Tool (JCT). This tool provided by cOAlition S (European funders) for the researchers (fundee) to check the compliance with the journal.

Recommend journal to your library

You can recommend the journal being a researcher or faculty member to your library. We will post a copy of the Journal to your library on your behalf at free of cost.
Click here: Recommend Journal

Preprint Arxiv Submission

The authors are encouraged to submit the author’s copy (preprint) to appropriate preprint archives e.g. https://arxiv.org and/or on https://indiarxiv.org or institutional repositories (e.g., D Space) before paper acceptance by the editor of Journal. After publications of the paper author(s) should mention the citation information, title and abstract along with DOI number of the publication carefully on the required page of the depository(ies).

Contact: Phone: +91-172-2741000, +91-172-4691800

Email : editor.jptrm@chitkara.edu.in;

Abstract and Indexing

Information

This work is licensed under a Creative Commons Attribution 4.0 International License.

Articles in Journal of Pharmaceutical Technology, Research and Management (J. Pharm. Tech. Res. Management) by Chitkara University Publications are Open Access articles that are published with licensed under a Creative Commons Attribution- CC-BY 4.0 International License. Based on a work at https://jptrm.chitkara.edu.in/. This license permits one to use, remix, tweak and reproduction in any medium, even commercially provided one give credit for the original creation.

View Legal Code of the above-mentioned license, https://creativecommons.org/licenses/by/4.0/legalcode

View Licence Deed here https://creativecommons.org/licenses/by/4.0/

Creative Commons License

Journal of Pharmaceutical Technology, Research and Management by Chitkara University Publications is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at https://jptrm.chitkara.edu.in//

Visibility, Memberships and Ethics