Hydrogels in Chronic Wound Care: A Multifaceted Approach to Healing and Regeneration

Published: August 25, 2025

Authors

Himanshu Sharma, Sanchit Dhankhar, Vishnu Mittal, Balraj Saini, Pooja Mittal, and Akashdeep Singh

Keywords
Hydrogels, Polymers, Wound dressings, Chronic wounds, Wound healing

Abstract

Background: In wealthy nations, 1-2% of people suffer from serious chronic wounds. In India, chronic wounds have a prevalence rate of approximately 4.5 per 1000 individuals, with diabetic foot ulcers and pressure ulcers being the most common.

Purpose: Chronic wound treatment is necessary to maintain patients’ physical and emotional well-being and improve quality of life. Numerous methods, including hydrogel dressings, skin grafts, debridement, ultrasound, electromagnetic, and negative pressure wound treatment, may be used to treat chronic wounds.

Methods: Recent literature has been surveyed from PUBMED, GOOGLE SCHOLAR, etc., like search engines, for summarizing detailed ongoing developments in the field of hydrogels in chronic wound care.

Conclusions: Due to their functional qualities that may be adjusted, hydrogel dressings are a viable and promising solution for accelerating the healing of chronic wounds. These characteristics include biodegradability, adhesion, and bioactivities that are pre-antigenic, antibacterial, and anti-inflammatory. This overview summarizes the various types of chronic wounds, stages of the healing process, and important treatment modalities. The advantages of hydrogel-based dressings for treating chronic wounds are discussed, along with their multifunctional qualities, illustrating their superiority over other dressing types for long-term wound healing.

References

  • Abarca-Cabrera, L., Fraga-García, P., & Berensmeier, S. (2021). Bio-nano interactions: binding proteins, polysaccharides, lipids and nucleic acids onto magnetic nanoparticles. Biomaterials Research, 25(1), 12. https://doi.org/10.3389/fimmu.2024.1395479
  • Abazari, M., Ghaffari, A., Rashidzadeh, H., Badeleh, S. M., & Maleki, Y. (2022). A systematic review on classification, identification, and healing process of burn wound healing. The International Journal of Lower Extremity Wounds, 21(1), 18-30. https://doi.org/10.1053/nbin.2001.23176
  • Ahmed, M. S., Yun, S., Kim, H.-Y., Ko, S., Islam, M., & Nam, K.-W. (2025). Hydrogels and Microgels: Driving Revolutionary Innovations in Targeted Drug Delivery, Strengthening Infection Management, and Advancing Tissue Repair and Regeneration. Gels, 11(3), 179. https://doi.org/10.1152/physrev.00067.2017
  • Al-Mutairi, H. H., Al-Mansour, H. S., Al-Mutairi, M. S., Al-Muraibid, N., Al-Dajani, N. N., Al-Otaibi, S. M., Al-Otaibi, S. S., Al Shamri, A. M., Aldhafeeri, M. M. M., & Alobaida, H. A. A. (2024). Complex Wound Management: Nursing Intervention Protocols-An Updated Review. Journal of Ecohumanism, 3(8), 11893–11908-11893–11908. https://doi.org/10.1080/09546634.2020.1730296
  • Almawash, S., Osman, S. K., Mustafa, G., & El Hamd, M. A. (2022). Current and future prospective of injectable hydrogels—design challenges and limitations. Pharmaceuticals, 15(3), 371. https://doi.org/10.1016/j.imbio.2011.01.001
  • Anderson, J. M., & Jiang, S. (2016). Implications of the acute and chronic inflammatory response and the foreign body reaction to the immune response of implanted biomaterials. In The Immune Response to Implanted Materials and Devices: The Impact of the Immune System on the Success of an Implant (pp. 15-36). Springer. https://doi.org/10.3389/fcell.2020.00697
  • Ashammakhi, N., Ahadian, S., Darabi, M. A., El Tahchi, M., Lee, J., Suthiwanich, K., Sheikhi, A., Dokmeci, M. R., Oklu, R., & Khademhosseini, A. (2019). Minimally invasive and regenerative therapeutics. Advanced materials, 31(1), 1804041. https://doi.org/10.3390/ph15030371
  • Basit, A., Yu, H., Wang, L., Uddin, M. A., Wang, Y., Awan, K. M., Keshta, B. E., & Malik, M. O. (2024). Recent advances in wet surface tissue adhesive hydrogels for wound treatment. European Polymer Journal, 113260. https://doi.org/10.1177/1534734620924857
  • Bayer, L. R. (2018). Negative-pressure wound therapy. Interventional treatment of wounds: a modern approach for better outcomes, 193-213. https://doi.org/10.3390/ijms23084074
  • Bianchera, A., Catanzano, O., Boateng, J., & Elviri, L. (2020). The place of biomaterials in wound healing. Therapeutic dressings and wound healing applications, 337-366.  10.5772/intechopen.1003834
  • Bowling, F. L., Rashid, S. T., & Boulton, A. J. (2015). Preventing and treating foot complications associated with diabetes mellitus. Nature Reviews Endocrinology, 11(10), 606-616. https://doi.org/10.1089/wound.2020.1275
  • Burgess, J. L., Wyant, W. A., Abdo Abujamra, B., Kirsner, R. S., & Jozic, I. (2021). Diabetic wound-healing science. Medicina, 57(10), 1072. https://doi.org/10.3390/ijms17122085
  • Catoira, M. C., González-Payo, J., Fusaro, L., Ramella, M., & Boccafoschi, F. (2020). Natural hydrogels R&D process: technical and regulatory aspects for industrial implementation. Journal of Materials Science: Materials in Medicine, 31(8), 64. https://doi.org/10.1186/s40824-021-00212-y
  • Cazander, G., den Ottelander, B. K., Kamga, S., Doomen, M. C., Damen, T. H., & van Well, A. M. E. (2020). Importance of debriding and wound cleansing agents in wound healing. Therapeutic dressings and wound healing applications, 59-89. https://doi.org/10.1016/j.sjbs.2024.103963
  • Cefalu, J. E., Barrier, K. M., & Davis, A. H. (2017). Wound infections in critical care. Critical Care Nursing Clinics, 29(1), 81-96. https://doi.org/10.1021/acsnano.1c04206
  • Chandra, P., Pathak, R., Sachan, N., & Verma, A. (2025). Proteins as Biocompatible Material for Biomedical Applications. In Sustainable Green Biomaterials As Drug Delivery Systems (pp. 131-163). Springer. https://doi.org/10.1002/adhm.202100477
  • Correa, S., Grosskopf, A. K., Lopez Hernandez, H., Chan, D., Yu, A. C., Stapleton, L. M., & Appel, E. A. (2021). Translational applications of hydrogels. Chemical reviews, 121(18), 11385-11457. https://doi.org/10.1016/j.heliyon.2024.e32040
  • da Silva, L. P., Reis, R. L., Correlo, V. M., & Marques, A. P. (2019). Hydrogel-based strategies to advance therapies for chronic skin wounds. Annual review of biomedical engineering, 21(1), 145-169. https://doi.org/10.3390/ijms25073849
  • Dabiri, G., Damstetter, E., & Phillips, T. (2016). Choosing a wound dressing based on common wound characteristics. Advances in wound care, 5(1), 32-41. https://doi.org/10.1155/2022/3606765
  • Delavary, B. M., van der Veer, W. M., van Egmond, M., Niessen, F. B., & Beelen, R. H. (2011). Macrophages in skin injury and repair. Immunobiology, 216(7), 753-762. https://doi.org/10.1002/adma.201804041
  • Denzer, B. R., Kulchar, R. J., Huang, R. B., & Patterson, J. (2021). Advanced methods for the characterization of supramolecular hydrogels. Gels, 7(4), 158. https://doi.org/10.3390/polym13132100
  • DesJardins-Park, H. E., Gurtner, G. C., Wan, D. C., & Longaker, M. T. (2022). From chronic wounds to scarring: the growing health care burden of under-and over-healing wounds. Advances in wound care, 11(9), 496-510. https://doi.org/10.1111/bjd.21612
  • Devey, J. J., Linklater, A., & Kirby, R. (2016). Wounds and bandages. Monitoring and Intervention for the Critically Ill Small Animal: The Rule of 20, 373-387. https://doi.org/10.62754/joe.v3i8.5788
  • Duarte, J., Mascarenhas-Melo, F., Pires, P. C., Veiga, F., & Paiva-Santos, A. C. (2024). Multifunctional hydrogels-based therapies for chronic diabetic wound healing. European Polymer Journal, 113026. https://doi.org/10.3390/medicina57101072
  • Fang, Y., Han, Y., Yang, L., Kankala, R. K., Wang, S., Chen, A., & Fu, C. (2025). Conductive hydrogels: intelligent dressings for monitoring and healing chronic wounds. Regenerative Biomaterials, 12, rbae127. https://doi.org/10.1038/nrendo.2015.130
  • Fani, N., Moradi, M., Zavari, R., Parvizpour, F., Soltani, A., Arabpour, Z., & Jafarian, A. (2024). Current advances in wound healing and regenerative medicine. Current stem cell research & therapy, 19(3), 277-291. https://doi.org/10.1002/dmrr.829
  • Farahani, M., & Shafiee, A. (2021). Wound healing: from passive to smart dressings. Advanced Healthcare Materials, 10(16), 2100477. https://doi.org/10.12968/jowc.2016.25.Sup6.S1
  • Ferraz, M. P. (2025). Wound Dressing Materials: Bridging Material Science and Clinical Practice. Applied Sciences, 15(4), 1725. https://doi.org/10.1016/j.cnc.2016.09.009
  • Firlar, I., Altunbek, M., McCarthy, C., Ramalingam, M., & Camci-Unal, G. (2022). Functional hydrogels for treatment of chronic wounds. Gels, 8(2), 127. 10.1097/PRS.0b013e3182001f0f
  • Franks, P. J., Barker, J., Collier, M., Gethin, G., Haesler, E., Jawien, A., Laeuchli, S., Mosti, G., Probst, S., & Weller, C. (2016). Management of patients with venous leg ulcers: challenges and current best practice. Journal of wound care, 25(Sup6), S1-S67. https://doi.org/10.3390/gels10030188
  • Froimchuk, E., Carey, S. T., Edwards, C., & Jewell, C. M. (2020). Self-assembly as a molecular strategy to improve immunotherapy. Accounts of chemical research, 53(11), 2534-2545. https://doi.org/10.1146/annurev-bioeng-060418-052422
  • Ganji, F., Abdekhodaie, M., & Ramazani SA, A. (2007). Gelation time and degradation rate of chitosan-based injectable hydrogel. Journal of sol-gel science and technology, 42, 47-53. https://doi.org/10.3390/app15041725
  • Gao, F., Jiao, C., Yu, B., Cong, H., & Shen, Y. (2021). Preparation and biomedical application of injectable hydrogels. Materials Chemistry Frontiers, 5(13), 4912-4936.10.1039/d4ma01005a
  • Gottrup, F., Dissemond, J., Baines, C., Frykberg, R., Jensen, P. Ø., Kot, J., Kröger, K., & Longobardi, P. (2017). Use of oxygen therapies in wound healing: Focus on topical and hyperbaric oxygen treatment. Journal of wound care, 26(Sup5), S1-S43. https://doi.org/10.1016/B978-0-12-819838-4.00012-2
  • Hamidi, M., Azadi, A., & Rafiei, P. (2008). Hydrogel nanoparticles in drug delivery. Advanced drug delivery reviews, 60(15), 1638-1649. https://doi.org/10.1016/j.eurpolymj.2024.113260
  • Hosseini, A. M., Salim, M. A., Pourfaraziani, P., Jamali, M., Agahi, N., Azizi, A., & Mohammadian, M. (2023). Hydrogel Dressings: Multifunctional Solutions for Chronic Wound Healing; Focusing on In-Vivo Studies. Journal of Lab Animal Research, 2(5), 41-50. https://doi.org/10.1089/wound.2021.0039
  • Hu, Y., Yu, L., Dai, Q., Hu, X., & Shen, Y. (2024). Multifunctional antibacterial hydrogels for chronic wound management. Biomaterials science. https://doi.org/10.1007/s13671-020-00319-w
  • Jacob, S., Nair, A. B., Shah, J., Sreeharsha, N., Gupta, S., & Shinu, P. (2021). Emerging role of hydrogels in drug delivery systems, tissue engineering and wound management. Pharmaceutics, 13(3), 357. https://doi.org/10.3390/gels8020127
  • Jeong, J.-O., Kim, M., Kim, S., Lee, K. K., & Choi, H. (2025). Advanced Hydrogel Systems for Local Anesthetic Delivery: Toward Prolonged and Targeted Pain Relief. Gels, 11(2), 131. https://doi.org/10.2174/1574888X18666230301140659
  • Jiang, D., & Scharffetter-Kochanek, K. (2020). Mesenchymal stem cells adaptively respond to environmental cues thereby improving granulation tissue formation and wound healing. Frontiers in Cell and Developmental Biology, 8, 697. https://doi.org/10.2174/1574888X11666160905092513
  • Kammona, O., Tsanaktsidou, E., & Kiparissides, C. (2024). Recent developments in 3D-(bio) printed hydrogels as wound dressings. Gels, 10(2), 147. https://doi.org/10.3390/gels11030179
  • Kłapcia, A., & Domalik-Pyzik, P. (2025). Hydrogel dressings as insulin delivery systems for diabetic wounds. Frontiers in Bioscience-Elite, 17(1), 26446. https://doi.org/10.1039/D0TB02177F
  • Kus, K. J., & Ruiz, E. S. (2020). Wound dressings–a practical review. Current Dermatology Reports, 9, 298-308. https://doi.org/10.3390/gels10040216
  • Lee, J. H. (2018). Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering. Biomaterials Research, 22(1), 27. https://doi.org/10.3390/gels10020147
  • Liang, Y., He, J., & Guo, B. (2021). Functional hydrogels as wound dressing to enhance wound healing. ACS nano, 15(8), 12687-12722. https://doi.org/10.36502/2019/droa.6152
  • Ling, J. K. U., Sam, J. H., Jeevanandam, J., Chan, Y. S., & Nandong, J. (2022). Thermal degradation of antioxidant compounds: Effects of parameters, thermal degradation kinetics, and formulation strategies. Food and Bioprocess Technology, 15(9), 1919-1935. https://doi.org/10.1002/9781119433316.ch4
  • Lock, A., Cornish, J., & Musson, D. S. (2019). The role of in vitro immune response assessment for biomaterials. Journal of functional biomaterials, 10(3), 31. https://doi.org/10.12968/jowc.2017.26.Sup5.S1
  • Lv, X., Zhang, J., Yang, D., Shao, J., Wang, W., Zhang, Q., & Dong, X. (2020). Recent advances in pH-responsive nanomaterials for anti-infective therapy. Journal of Materials Chemistry B, 8(47), 10700-10711. https://doi.org/10.22377/ijgp.v11i01.870
  • Malone, M., & Schultz, G. (2022). Challenges in the diagnosis and management of wound infection. British Journal of Dermatology, 187(2), 159-166. https://doi.org/10.1007/BF02446963
  • Mamun, A. A., Shao, C., Geng, P., Wang, S., & Xiao, J. (2024). Recent advances in molecular mechanisms of skin wound healing and its treatments. Frontiers in immunology, 15, 1395479. https://doi.org/10.1007/978-3-319-66990-8_12
  • Mancuso, A., Barone, A., Cristiano, M. C., Cianflone, E., Fresta, M., & Paolino, D. (2020). Cardiac stem cell-loaded delivery systems: a new challenge for myocardial tissue regeneration. International Journal of Molecular Sciences, 21(20), 7701. https://doi.org/10.1016/S0733-8635(05)70199-6
  • Mills Sr, J. L. (2008). Open bypass and endoluminal therapy: complementary techniques for revascularization in diabetic patients with critical limb ischaemia. Diabetes/metabolism research and reviews, 24(S1), S34-S39. https://doi.org/10.1007/978-3-319-53805-1_86
  • Moura, L. I., Dias, A. M., Carvalho, E., & de Sousa, H. C. (2013). Recent advances on the development of wound dressings for diabetic foot ulcer treatment—A review. Acta Biomaterialia, 9(7), 7093-7114. https://doi.org/10.1089/wound.2014.0586
  • Muire, P. J., Thompson, M. A., Christy, R. J., & Natesan, S. (2022). Advances in immunomodulation and immune engineering approaches to improve healing of extremity wounds. International Journal of Molecular Sciences, 23(8), 4074. https://doi.org/10.3390/molecules25112699
  • Nandhini, J., Karthikeyan, E., Rani, E. E., Karthikha, V., Sanjana, D. S., Jeevitha, H., Rajeshkumar, S., Venugopal, V., & Priyadharshan, A. (2024). Advancing engineered approaches for sustainable wound regeneration and repair: Harnessing the potential of green synthesized silver nanoparticles. Engineered Regeneration, 5(3), 306-325. https://doi.org/10.58803/jlar.v2i5.28
  • Naser, M., Nasr, M. M., & Shehata, L. H. (2024). Smart Wound Dressings Integrating Biosensors for Real-Time Monitoring of Wound Conditions. https://doi.org/10.1002/9781118923870.ch21
  • Nielsen, L. E. (1969). Cross-linking–effect on physical properties of polymers. Journal of Macromolecular Science, Part C, 3(1), 69-103. https://doi.org/10.3390/bioengineering10091022
  • Nouri, K., Rajabi-Estarabadi, A., Zheng, C., Leon, A., Herbst, J. S., Forouzandeh, M., Vazquez, T., Akhtar, S., Kursewicz, C., & Long, J. (2022). Dermatological Surgery. Atlas of Dermatology, Dermatopathology and Venereology: Cutaneous Infectious and Neoplastic Conditions and Procedural Dermatology, 529-563. https://doi.org/10.1002/9781119433316.ch15
  • Oliveira, A., Simões, S., Ascenso, A., & Reis, C. P. (2022). Therapeutic advances in wound healing. Journal of Dermatological Treatment, 33(1), 2-22. https://doi.org/10.1016/j.actbio.2013.03.033
  • Olteanu, G., Neacșu, S. M., Joița, F. A., Musuc, A. M., Lupu, E. C., Ioniță-Mîndrican, C.-B., Lupuliasa, D., & Mititelu, M. (2024). Advancements in regenerative hydrogels in skin wound treatment: a comprehensive review. International Journal of Molecular Sciences, 25(7), 3849. 10.31083/FBE26446
  • Pudlarz, A., & Szemraj, J. (2018). Nanoparticles as carriers of proteins, peptides and other therapeutic molecules. Open life sciences, 13(1), 285-298. https://doi.org/10.1021/acs.biomac.0c01069
  • Rana, M. M., & De la Hoz Siegler, H. (2024). Evolution of hybrid hydrogels: Next-generation biomaterials for drug delivery and tissue engineering. Gels, 10(4), 216. https://doi.org/10.1016/j.cej.2021.130843
  • Rao, N., Ziran, B. H., & Lipsky, B. A. (2011). Treating osteomyelitis: antibiotics and surgery. Plastic and reconstructive surgery, 127, 177S-187S. https://doi.org/10.1111/wrr.13154
  • Rashidi, S. (2017). A review of mechanism of actions of ultrasound waves for treatment of soft tissue injuries. International Journal of Green Pharmacy (IJGP), 11(01). https://doi.org/10.3390/gels8020127
  • Revete, A., Aparicio, A., Cisterna, B. A., Revete, J., Luis, L., Ibarra, E., Segura González, E. A., Molino, J., & Reginensi, D. (2022). Advancements in the use of hydrogels for regenerative medicine: properties and biomedical applications. International Journal of Biomaterials, 2022(1), 3606765. https://doi.org/10.1039/D3TB02912C
  • Ribeiro, M., Simões, M., Vitorino, C., & Mascarenhas-Melo, F. (2024). Hydrogels in cutaneous wound healing: Insights into characterization, properties, formulation and therapeutic potential. Gels, 10(3), 188. https://doi.org/10.1016/j.heliyon.2024.e24584
  • Rodrigues, M., Kosaric, N., Bonham, C. A., & Gurtner, G. C. (2018). Wound healing: a cellular perspective. Physiological reviews. https://doi.org/10.1021/acsomega.2c06806
  • Romano, E., Campagnuolo, C., Palladino, R., Schiavo, G., Maglione, B., Luceri, C., & Mennini, N. (2023). Technical evaluation of a new medical device based on rigenase in the treatment of chronic skin lesions. Bioengineering, 10(9), 1022. https://doi.org/10.1093/rb/rbae127
  • Roy, A., Manna, K., & Pal, S. (2022). Recent advances in various stimuli-responsive hydrogels: From synthetic designs to emerging healthcare applications. Materials Chemistry Frontiers, 6(17), 2338-2385. https://doi.org/10.1002/adhm.202400513
  • Ruke, M., & Savai, J. (2019). Diabetic foot infection, biofilm & new management strategy. Diabetes Research: Open Access, 2019(1), 7. https://doi.org/10.3390/pharmaceutics13030357
  • Saberian, M., & Abak, N. (2024). Hydrogel-mediated delivery of platelet-derived exosomes: Innovations in tissue engineering. Heliyon, 10(2). https://doi.org/10.1016/j.eurpolymj.2024.113026
  • Saberian, M., Roudsari, R. S., Haghshenas, N., Rousta, A., & Alizadeh, S. (2024). How the combination of alginate and chitosan can fabricate a hydrogel with favorable properties for wound healing. Heliyon, 10(11). https://ijpsat.org/
  • Sanin, L., Mathew, N., Bellmeyer, L., & Ali, S. (1994). The International Headache Society (IHS) headache classification as applied to a headache clinic population. Cephalalgia, 14(6), 443-446. https://doi.org/10.1039/D4BM00155A
  • Sankar, S., & Muthukaliannan, G. K. (2024). Deciphering the crosstalk between inflammation and biofilm in chronic wound healing: Phytocompounds loaded bionanomaterials as therapeutics. Saudi Journal of Biological Sciences, 103963. https://www.mdpi.com/1422-0067/25/7/3849#
  • Sheng, L., Zhang, Z., Zhang, Y., Wang, E., Ma, B., Xu, Q., Ma, L., Zhang, M., Pei, G., & Chang, J. (2021). A novel “hot spring”-mimetic hydrogel with excellent angiogenic properties for chronic wound healing. Biomaterials, 264, 120414. https://doi.org/10.1016/j.engreg.2024.06.004
  • Solanki, D., Vinchhi, P., & Patel, M. M. (2023). Design considerations, formulation approaches, and strategic advances of hydrogel dressings for chronic wound management. ACS omega, 8(9), 8172-8189. https://doi.org/10.1039/C9TB01398A
  • Song, H., Hao, D., Zhou, J., Farmer, D., & Wang, A. (2024). Development of pro‐angiogenic skin substitutes for wound healing. Wound repair and regeneration, 32(3), 208-216. https://doi.org/10.1039/D1QM00489A
  • Song, R., Murphy, M., Li, C., Ting, K., Soo, C., & Zheng, Z. (2018). Current development of biodegradable polymeric materials for biomedical applications. Drug design, development and therapy, 3117-3145.10.1186/s40824-018-0138-6
  • Stoica, A. E., Chircov, C., & Grumezescu, A. M. (2020). Nanomaterials for wound dressings: an up-to-date overview. Molecules, 25(11), 2699. https://doi.org/10.1021/acs.accounts.0c00438
  • Strodtbeck, F. (2001). Physiology of wound healing. Newborn and infant nursing reviews, 1(1), 43-52. https://doi.org/10.1046/j.1468-2982.1994.1406443.x
  • Sun, C., Zeng, X., Zheng, S., Wang, Y., Li, Z., Zhang, H., Nie, L., Zhang, Y., Zhao, Y., & Yang, X. (2022). Bio-adhesive catechol-modified chitosan wound healing hydrogel dressings through glow discharge plasma technique. Chemical Engineering Journal, 427, 130843. https://doi.org/10.1007/978-3-031-79062-1_6
  • Valencia, I. C., Falabella, A. F., & Eaglstein, W. H. (2000). Skin grafting. Dermatologic clinics, 18(3), 521-532. https://doi.org/10.3390/gels7040158
  • Vathulya, M., Chattopadhyay, D., Kandwal, P., Nath, U. K., Kapoor, A., & Sinha, M. (2023). Adipose Tissue in Peripheral Obesity as an Assessment Factor for Pressure Ulcers. Advances in wound care, 12(9), 513-528. https://doi.org/10.1007/s11947-022-02797-1
  • Vinchhi, P., Rawal, S. U., & Patel, M. M. (2021). Biodegradable hydrogels. In Drug delivery devices and therapeutic systems (pp. 395-419). Elsevier. https://doi.org/10.1007/s10971-006-9007-1
  • Vodovnik, L., & Karba, R. (1992). Treatment of chronic wounds by means of electric and electromagnetic fields part 1 literature review. Medical and Biological Engineering and Computing, 30, 257-266. https://doi.org/10.1021/acs.chemrev.3c00498
  • Xu, C., Chen, Y., Zhao, S., Li, D., Tang, X., Zhang, H., Huang, J., Guo, Z., & Liu, W. (2024). Mechanical Regulation of Polymer Gels. Chemical reviews, 124(18), 10435-10508. https://doi.org/10.1080/15583726908545897
  • Xu, Z., Han, S., Gu, Z., & Wu, J. (2020). Advances and impact of antioxidant hydrogel in chronic wound healing. Advanced Healthcare Materials, 9(5), 1901502. https://doi.org/10.1515/biol-2018-0035
  • Yadav, R., Kumar, R., Kathpalia, M., Ahmed, B., Dua, K., Gulati, M., Singh, S., Singh, P. J., Kumar, S., & Shah, R. M. (2024). Innovative approaches to wound healing: insights into interactive dressings and future directions. Journal of Materials Chemistry B, 12(33), 7977-8006. https://doi.org/10.3390/gels11020131
  • Yi, S., Ding, F., Gong, L., & Gu, X. (2017). Extracellular matrix scaffolds for tissue engineering and regenerative medicine. Current stem cell research & therapy, 12(3), 233-246. rg/10.1016/j.biomaterials.2011.05.078
  • Young, S. A., Riahinezhad, H., & Amsden, B. G. (2019). In situ-forming, mechanically resilient hydrogels for cell delivery. Journal of Materials Chemistry B, 7(38), 5742-5761. https://doi.org/10.1007/978-3-319-45433-7_2
  • Yousif, D., Yousif, Z., & Joseph, P. (2024). Diabetic Foot Ulcer Neuropathy, Impaired Vasculature, and Immune Responses. In Diabetic Foot Ulcers-Pathogenesis, Innovative Treatments and AI Applications. IntechOpen. https://doi.org/10.1021/acs.chemrev.0c01177
  • Zhang, L., Liu, M., Zhang, Y., & Pei, R. (2020). Recent progress of highly adhesive hydrogels as wound dressings. Biomacromolecules, 21(10), 3966-3983. https://doi.org/10.1007/s10856-020-06401-w
  • Zhang, W., Liu, L., Cheng, H., Zhu, J., Li, X., Ye, S., & Li, X. (2024). Hydrogel-based dressings designed to facilitate wound healing. Materials Advances, 5(4), 1364-1394. https://doi.org/10.2147/DDDT.S165440
  • Zhang, X., Tan, B., Wu, Y., Zhang, M., & Liao, J. (2021). A review on hydrogels with photothermal effect in wound healing and bone tissue engineering. Polymers, 13(13), 2100. https://doi.org/10.3390/ijms21207701
  • Zhao, R., Liang, H., Clarke, E., Jackson, C., & Xue, M. (2016). Inflammation in chronic wounds. International Journal of Molecular Sciences, 17(12), 2085. https://doi.org/10.1016/j.addr.2008.08.002

How to Cite

Himanshu Sharma, Sanchit Dhankhar, Vishnu Mittal, Balraj Saini, Pooja Mittal, and Akashdeep Singh. Hydrogels in Chronic Wound Care: A Multifaceted Approach to Healing and Regeneration. J. Pharm. Technol. Res. Manag.. 2025, 13, 1-19
Hydrogels in Chronic Wound Care: A Multifaceted Approach to Healing and Regeneration

Current Issue

PeriodicityBiannually
Issue-1June
Issue-2December
ISSN Print2321-2217
ISSN Online2321-2225
RNI No.CHAENG/2013/50088

This work is licensed under a Creative Commons Attribution 4.0 International License.

Articles in Journal of Pharmaceutical Technology, Research and Management (J. Pharm. Tech. Res. Management) by Chitkara University Publications are Open Access articles that are published with licensed under a Creative Commons Attribution- CC-BY 4.0 International License. Based on a work at https://jptrm.chitkara.edu.in/. This license permits one to use, remix, tweak and reproduction in any medium, even commercially provided one give credit for the original creation.

View Legal Code of the above-mentioned license, https://creativecommons.org/licenses/by/4.0/legalcode

View Licence Deed here https://creativecommons.org/licenses/by/4.0/

Creative Commons License

Journal of Pharmaceutical Technology, Research and Management by Chitkara University Publications is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at https://jptrm.chitkara.edu.in//

Visibility, Memberships and Ethics