Computational Design of Herbal Inhibitors of PAI-1 for Accelerated Wound Healing

Published: November 20, 2024

Authors

Ankita Sharma, Ozkan Fidan, Mohammed Er-rajy, and Mohamed El Fadili

Keywords
Wound, Plasminogen Activation Inhibitor-1, Wound healing, Docking

Abstract

Background: Wounds are one of the significant health issues that can cause serious complications if left untreated. The proper management and treatment of wounds is highly essential to avoid the chances of developing infections and therefore promote timely healing. Plasminogen activator inhibitor-1 (PAI-1) is a potential therapeutic target that interrupts the activation of plasminogen in the wounded tissues required for the healing process and therefore delays the healing process. Plant-based therapeutics are always demanded for wound healing because of their potential efficacy, optimized pharmacokinetics, safety, and availability.

Purpose: The aim of the current study is to identify potent plant-based molecules for wound healing and to understand the most probable underlying mechanisms of action for the same.

Methods: Thus, a library was prepared consisting of eighty-five plant-based ligands derived from diverse plants such as aloe vera, turmeric, neem, ginseng, calendula, etc., which were traditionally used for the management of wounds and related issues.

Results: Therefore, the prepared ligand library is computationally screened against a three-dimensional model of PAI1 to shortlist the potential leads, followed by molecular dynamic simulation to validate their thermodynamic stability. The resulting simulations of the PAI1-emodin complex over a 100 ns period revealed their high stability.

Conclusion: Thus, emodin was proposed as a potential inhibitor of PAI1 and can be used to develop a newer wound healing agent.

References

  • Abazari, M., Ghaffari, A., Rashidzadeh, H., Badeleh, S. M., & Maleki, Y. (2022). A systematic review on classification, identification, and healing process of burn wound healing. International Journal of Lower Extremity Wounds, 21, 18–30. https://doi.org/10.1177/1534734620924857/ASSET/IMAGES/LARGE/10.1177_1534734620924857-FIG4.JPEG
  • Abdel-Mohsen, A. M., Frankova, J., Abdel-Rahman, R. M., Salem, A. A., Sahffie, N. M., Kubena, I., & Jancar, J. (2020). Chitosan-glucan complex hollow fibers reinforced collagen wound dressing embedded with aloe vera. II. Multifunctional properties to promote cutaneous wound healing. International Journal of Pharmaceutics, 582, 119349. https://doi.org/10.1016/j.ijpharm.2020.119349
  • Adasme, M. F., Linnemann, K. L., Bolz, S. N., Kaiser, F., Salentin, S., Haupt, V. J., & Schroeder, M. (2021). PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Research, 49, W530–W534. https://doi.org/10.1093/NAR/GKAB294
  • Agrawal, N., Mujwar, S., Goyal, A., & Gupta, J. K. (2021). Phytoestrogens as potential antiandrogenic agents against prostate cancer: An in silico analysis. Letters in Drug Design & Discovery, 19, 69–78. https://doi.org/10.2174/1570180818666210813121431
  • Ahmed, M. S., Khan, I. J., Aman, S., Chauhan, S., Kaur, N., Shriwastav, S., Goel, K., Saini, M., Dhankar, S., Singh, T. G., Dev, J., & Mujwar, S. (2023). Phytochemical investigations, in-vitro antioxidant, antimicrobial potential, and in-silico computational docking analysis of Euphorbia milii Des Moul. Journal of Experimental Biology and Agricultural Sciences, 11, 380–393. https://doi.org/10.18006/2023.11(2).380.393
  • Almaieli, L. M. A., Khalaf, M. M., Gouda, M., Elmushyakhi, A., Abou Taleb, M. F., & Abd El-Lateef, H. M. (2023). Fabrication of bio-based film comprising metal oxide nanoparticles loaded chitosan for wound dressing applications. Polymers (Basel), 15. https://doi.org/10.3390/POLYM15010211
  • Álvarez-Santos, N., Estrella-Parra, E. A., Benítez-Flores, J. del C., Serrano-Parrales, R., Villamar-Duque, T. E., Santiago-Santiago, M. A., González-Valle, M. del R., Avila-Acevedo, J. G., & García-Bores, A. M. (2022). Asterohyptisstellulata: Phytochemistry and wound healing activity. Food Bioscience, 50. https://doi.org/10.1016/j.fbio.2022.102150
  • Berman, H. M., Battistuz, T., Bhat, T. N., Bluhm, W. F., Bourne, P. E., Burkhardt, K., Feng, Z., Gilliland, G. L., Iype, L., Jain, S., Fagan, P., Marvin, J., Padilla, D., Ravichandran, V., Schneider, B., Thanki, N., Weissig, H., Westbrook, J. D., & Zardecki, C. (2002). The protein data bank. Acta Crystallographica Section D: Biological Crystallography, 58, 899–907. https://doi.org/10.1107/S0907444902003451
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28, 235–242. https://doi.org/10.1093/NAR/28.1.235
  • Bowers, K. J., Chow, D. E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., Sacerdoti, F. D., Salmon, J. K., Shan, Y., & Shaw, D. E. (2007). Scalable algorithms for molecular dynamics simulations on commodity clusters. Proceedings of the ACM/IEEE Conference on Supercomputing, SC’06, 43–43. https://doi.org/10.1109/SC.2006.54
  • Bowers, K. J., Chow, E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., Sacerdoti, F. D., Salmon, J. K., Shan, Y., & Shaw, D. E. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters. Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, SC’06. https://doi.org/10.1145/1188455.1188544
  • Chauhan, S., Chalotra, R., Rathi, A., Saini, M., Deol, S., Lard, M., & Gupta, S. (2023). Current approaches in healing of wounds in diabetes and diabetic foot ulcers. Current Bioactive Compounds, 19. https://doi.org/10.2174/1573407218666220823111344
  • Chauhan, S., Gupta, S., Yasmin, S., & Saini, M. (2021). Antihyperglycemic and antioxidant potential of plant extract of Litchi chinensis and Glycine max. International Journal of Nutritional Pharmacology and Neurological Diseases, 11, 225–233. https://doi.org/10.4103/IJNPND.IJNPND_13_21
  • Dhankhar, S., Chauhan, S., Mehta, D. K., Nitika, Saini, K., Saini, M., Das, R., Gupta, S., & Gautam, V. (2023). Novel targets for potential therapeutic use in diabetes mellitus. Diabetology & Metabolic Syndrome, 15. https://doi.org/10.1186/S13098-023-00983-5
  • Dhankhar, S., Garg, N., Chauhan, S., & Saini, M. (2024a). Role of artificial intelligence in diabetic wound screening and early detection. Current Biotechnology, 13, 93–106. https://doi.org/10.2174/0122115501303253240408072559
  • Dhankhar, S., Garg, N., Chauhan, S., Saini, M., Singh, T. G., & Singh, R. (2024b). Unravelling the microbiome’s role in healing diabetic wounds. Current Pharmaceutical Biotechnology, 25. https://doi.org/10.2174/0113892010307032240530071003
  • Dhankhar, S., Garg, N., Chauhan, S., Saini, M., Singh, T. G., & Singh, R. (2024c). Unravelling the microbiome’s role in healing diabetic wounds. Current Pharmaceutical Biotechnology, 25. https://doi.org/10.2174/0113892010307032240530071003
  • Er-rajy, M., El Fadili, M., Mujwar, S., Imtara, H., Al Kamaly, O., Zuhair Alshawwa, S., Nasr, F. A., Zarougui, S., & Elhallaoui, M. (2023a). Design of novel anti-cancer agents targeting COX-2 inhibitors based on computational studies. Arabian Journal of Chemistry, 16, 105193. https://doi.org/10.1016/J.ARABJC.2023.105193
  • Er-rajy, M., El Fadili, M., Mujwar, S., Lenda, F. Z., Zarougui, S., & Elhallaoui, M. (2023c). QSAR, molecular docking, and molecular dynamics simulation-based design of novel anti-cancer drugs targeting thioredoxin reductase enzyme. Structural Chemistry, 1–17. https://doi.org/10.1007/S11224-022-02111-X/METRICS
  • Er-rajy, M., El Fadili, M., Mujwar, S., Lenda, F. Z., Zarougui, S., & Elhallaoui, M. (2023d). QSAR, molecular docking, and molecular dynamics simulation-based design of novel anti-cancer drugs targeting thioredoxin reductase enzyme. Structural Chemistry, 1–17. https://doi.org/10.1007/S11224-022-02111-X
  • Er-rajy, M., El Fadili, M., Mujwar, S., Zarougui, S., & Elhallaoui, M. (2023b). Design of novel anti-cancer drugs targeting TRKs inhibitors based on 3D QSAR, molecular docking, and molecular dynamics simulation. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2023.2170471
  • Er-rajy, M., El Fadili, M., Mujwar, S., Zarougui, S., & Elhallaoui, M. (2023e). Design of novel anti-cancer drugs targeting TRKs inhibitors based on 3D QSAR, molecular docking, and molecular dynamics simulation. J Biomol Struct Dyn, 1–14. https://doi.org/10.1080/07391102.2023.2170471
  • Fidan, O., Mujwar, S., & Kciuk, M. (2022). Discovery of adapalene and dihydrotachysterol as antiviral agents for the Omicron variant of SARS-CoV-2 through computational drug repurposing. Molecular Diversity. https://doi.org/10.1007/s11030-022-10440-6
  • Ghosh, S., Haldar, S., Gupta, S., Chauhan, S., Mago, V., Roy, P., & Lahiri, D. (2022). Single unit functionally graded bioresorbable electrospun scaffold for scar-free full-thickness skin wound healing. Biomaterials Advances, 139. https://doi.org/10.1016/J.BIOADV.2022.212980
  • Gielecińska, A., Kciuk, M., Mujwar, S., Celik, I., Kołat, D., Kałuzińska-Kołat, Ż., & Kontek, R. (2023). Substances of natural origin in medicine: Plants vs. cancer. Cells, 12. https://doi.org/10.3390/CELLS12070986
  • Gupta, N., Qayum, A., Singh, S., Mujwar, S., & Sangwan, P. L. (2022a). Isolation, cytotoxicity evaluation, docking, ADMET, and drug likeness studies of secondary metabolites from the stem bark of Anthocephalus cadamba (Roxb.). ChemistrySelect, 7, e202202950. https://doi.org/10.1002/SLCT.202202950
  • Gupta, N., Qayum, A., Singh, S., Mujwar, S., & Sangwan, P. L. (2022b). Isolation, anticancer evaluation, molecular docking, drug likeness, and ADMET studies of secondary metabolites from Psoralea corylifolia seeds. ChemistrySelect, 7. https://doi.org/10.1002/SLCT.202202115
  • Gupta, S. M., Behera, A., Jain, N. K., Kumar, D., Tripathi, A., Tripathi, S. M., Mujwar, S., Patra, J., & Negi, A. (2023). Indene-derived hydrazides targeting acetylcholinesterase enzyme in Alzheimer’s: Design, synthesis, and biological evaluation. Pharmaceutics, 15, 94. https://doi.org/10.3390/PHARMACEUTICS15010094/S1
  • Hsieh, C. Y., Ko, P. W., Chang, Y. J., Kapoor, M., Liang, Y. C., Chu, H. L., Lin, H. H., Horng, J. C., & Hsu, M. H. (2019). Design and synthesis of benzimidazole-chalcone derivatives as potential anticancer agents. Molecules, 24, 3259. https://doi.org/10.3390/MOLECULES24183259
  • Jang, J. E., Eom, J. I., Jeung, H. K., Cheong, J. W., Lee, J. Y., Seok, J., Yoo, K., & Min, H. (2021). BET proteins as attractive targets for cancer therapeutics. International Journal of Molecular Sciences, 22, 11102. https://doi.org/10.3390/IJMS222011102
  • Kaur, A., Mujwar, S., & Adlakha, N. (2016). In-silico analysis of riboswitch of Nocardia farcinica for design of its inhibitors and pharmacophores. International Journal of Computational Biology and Drug Design, 9. https://doi.org/10.1504/IJCBDD.2016.078278
  • Kciuk, M., Garg, A., Rohilla, M., Chaudhary, R., Dhankhar, S., Dhiman, S., Bansal, S., Saini, M., Singh, T. G., Chauhan, S., Mujwar, S., Gielecińska, A., & Kontek, R. (2024). Therapeutic potential of plant-derived compounds and plant extracts in rheumatoid arthritis: Comprehensive review. Antioxidants (Basel), 13. https://doi.org/10.3390/ANTIOX13070775
  • Kciuk, M., Gielecińska, A., Mujwar, S., Mojzych, M., Marciniak, B., Drozda, R., & Kontek, R. (2022a). Targeting carbonic anhydrase IX and XII isoforms with small molecule inhibitors and monoclonal antibodies. Journal of Enzyme Inhibition and Medicinal Chemistry. https://doi.org/10.1080/14756366.2022.2052868
  • Kciuk, M., Malinowska, M., Gielecińska, A., Sundaraj, R., Mujwar, S., Zawisza, A., & Kontek, R. (2023). Synthesis, computational, and anticancer in vitro investigations of aminobenzylnaphthols derived from 2-naphtol, benzaldehydes, and α-aminoacids via the Betti reaction. Molecules, 28, 7230. https://doi.org/10.3390/MOLECULES28207230/S1
  • Kciuk, M., Mujwar, S., Rani, I., Munjal, K., Gielecińska, A., Kontek, R., & Shah, K. (2022b). Computational bioprospecting guggulsterone against ADP ribose phosphatase of SARS-CoV-2. Molecules. https://doi.org/10.3390/xxxxx
  • Kciuk, M., Mujwar, S., Szymanowska, A., Marciniak, B., Bukowski, K., Mojzych, M., & Kontek, R. (2022c). Preparation of novel pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulfonamides and their experimental and computational biological studies. International Journal of Molecular Sciences, 23, 5892. https://doi.org/10.3390/IJMS23115892
  • Kumar, V., Parate, S., Danishuddin, S., Zeb, A., Singh, P., Lee, G., Jung, T. S., Lee, K. W., & Ha, M. W. (2022). 3D-QSAR-based pharmacophore modeling, virtual screening, and molecular dynamics simulations for the identification of spleen tyrosine kinase inhibitors. Frontiers in Cell and Infection Microbiology, 12. https://doi.org/10.3389/FCIMB.2022.909111/FULL
  • Kumari, D., Palmo, T., Mujwar, S., & Singh, K. (2024). Harnessing computational and experimental approaches to identify potent hits against Leishmania donovani sterol C-24 methyltransferase from ChemBridge library. Acta Tropica, 260, 107473. https://doi.org/10.1016/J.ACTATROPICA.2024.107473
  • Li, Q., Zhang, H., Guan, S., Du, J., Zhang, Y., & Wang, S. (2023). Molecular dynamics simulation of the inhibition mechanism of factor XIa by Milvexian-like macrocyclic inhibitors. Computational and Theoretical Chemistry, 1225, 114131. https://doi.org/10.1016/J.COMPTC.2023.114131
  • Malik, R., Paudel, K.R., Manandhar, B., De Rubis, G., Shen, J., Mujwar, S., Singh, T.G., Singh, S.K., Gupta, G., Adams, J., MacLoughlin, R., Oliver, B.G.G., Hansbro, P.M., Chellappan, D.K., & Dua, K. (2023). Agarwood oil nanoemulsion counteracts LPS-induced inflammation and oxidative stress in RAW264.7 mouse macrophages. Pathology Research and Practice, 251, 154895. https://doi.org/10.1016/J.PRP.2023.154895
  • Mittal, P., Dhankhar, S., Chauhan, S., Garg, N., Bhattacharya, T., Ali, M., Chaudhary, A.A., Rudayni, H.A., Al-Zharani, M., Ahmad, W., Khan, S.U.D., Singh, T.G., & Mujwar, S. (2023). A review on natural antioxidants for their role in the treatment of Parkinson’s disease. Pharmaceuticals, 16(7), 908. https://doi.org/10.3390/PH16070908
  • Morris, G.M., Ruth, H., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., & Olson, A.J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(14), 2785–2791. https://doi.org/10.1002/JCC.21256
  • Movaffagh, J., Khatib, M., Fazly Bazzaz, B.S., Taherzadeh, Z., Hashemi, M., Seyedian Moghaddam, A., Tabatabaee, S. A., Azizzadeh, M., & Jirofti, N. (2022). Evaluation of wound-healing efficiency of a functional chitosan/aloe vera hydrogel on the improvement of re-epithelialization in full-thickness wound model of rat. Journal of Tissue Viability, 31, 649–656. https://doi.org/10.1016/J.JTV.2022.07.009
  • Mujwar, S. (2021a). Computational bioprospecting of andrographolide derivatives as potent cyclooxygenase-2 inhibitors. Biomedical and Biotechnology Research Journal, 5, 446–450. https://doi.org/10.4103/bbrj.bbrj_56_21
  • Mujwar, S. (2021b). Computational repurposing of tamibarotene against triple mutant variant of SARS-CoV-2. Computational Biology and Medicine, 136, 104748. https://doi.org/10.1016/j.compbiomed.2021.104748
  • Mujwar, S., & Harwansh, R. K. (2022). In silico bioprospecting of taraxerol as a main protease inhibitor of SARS-CoV-2 to develop therapy against COVID-19. Structural Chemistry, 33, 1517–1528. https://doi.org/10.1007/s11224-022-01943-x
  • Mujwar, S., & Kumar, V. (2020). Computational drug repurposing approach to identify potential fatty acid-binding protein-4 inhibitors to develop novel antiobesity therapy. Assay and Drug Development Technologies, 18, 318–327. https://doi.org/10.1089/adt.2020.976
  • Mujwar, S., & Pardasani, K. R. (2015). Prediction of riboswitch as a potential drug target and design of its optimal inhibitors for Mycobacterium tuberculosis. International Journal of Computational Biology and Drug Design, 8. https://doi.org/10.1504/IJCBDD.2015.073671
  • Mujwar, S., & Pardasani, K. R. (2022). Molecular docking simulation-based pharmacophore modeling to design translation inhibitors targeting c-di-GMP riboswitch of Vibrio cholera. Letters in Drug Design & Discovery, 20, 745–754. https://doi.org/10.2174/1570180819666220516123249
  • Mujwar, S., Shah, K., Gupta, J.K., & Gour, A. (2021). Docking-based screening of curcumin derivatives: A novel approach in the inhibition of tubercular DHFR. International Journal of Computational Biology and Drug Design.
  • Mujwar, S., Sun, L., & Fidan, O. (2022). In silico evaluation of food-derived carotenoids against SARS-CoV-2 drug targets: Crocin is a promising dietary supplement candidate for COVID-19. Journal of Food Biochemistry, 46. https://doi.org/10.1111/JFBC.14219
  • Patel, S., Srivastava, S., Singh, M.R., & Singh, D. (2019). Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets, and treatment strategies to pace wound healing. Biomedicine & Pharmacotherapy, 112, 108615. https://doi.org/10.1016/J.BIOPHA.2019.108615
  • Pathan, H., & Williams, J. (2012). Basic opioid pharmacology: An update. British Journal of Pain, 6, 11. https://doi.org/10.1177/2049463712438493
  • Polaka, S., Katare, P., Pawar, B., Vasdev, N., Gupta, T., Rajpoot, K., Sengupta, P., & Tekade, R.K. (2022). Emerging ROS-modulating technologies for augmentation of the wound healing process. ACS Omega, 7, 30657–30672. https://doi.org/10.1021/ACSOMEGA.2C02675/ASSET/IMAGES/LARGE/AO2C02675_0007.JPEG
  • Pradhan, P., Soni, N.K., Chaudhary, L., Mujwar, S., & Pardasani, K.R. (2015). In-silico prediction of riboswitches and design of their potent inhibitors for H1N1, H2N2, and H3N2 strains of influenza virus. Bioscience Biotechnology Research Asia, 12, 2173–2186. https://doi.org/10.13005/bbra/1889
  • Rani, I., & Goyal, A. (2019). Role of GSK3 (glycogen synthase kinase 3) as tumor promoter and tumor suppressor – A review. 19, 1360–1365.
  • Rani, I., Goyal, A., & Sharma, M. (2022). Computational design of phosphatidylinositol 3-kinase inhibitors. Assay and Drug Development Technologies, 20, 317–337. https://doi.org/10.1089/ADT.2022.057/ASSET/IMAGES/LARGE/ADT.2022.057_FIGURE7.JPEG
  • Sarnik, J., Popławski, T., & Tokarz, P. (2021). BET proteins as attractive targets for cancer therapeutics. International Journal of Molecular Sciences, 22(20), 11102. https://doi.org/10.3390/IJMS222011102
  • Shah, K., & Mujwar, S. (2022). Delineation of a novel non-steroidal anti-inflammatory drugs derivative using molecular docking and pharmacological assessment. Indian Journal of Pharmaceutical Sciences, 84, 642–653. https://doi.org/10.36468/PHARMACEUTICAL-SCIENCES.959
  • Shah, K., & Mujwar, S. (n.d.). Delineation of a novel non-steroidal anti-inflammatory drugs derivative using molecular docking and pharmacological assessment. Indian Journal of Pharmaceutical Sciences.
  • Shah, K., Mujwar, S., Gupta, J.K., Shrivastava, S.K., & Mishra, P. (2019). Molecular docking and in silico cogitation validate mefenamic acid prodrugs as human cyclooxygenase-2 inhibitors. Assay and Drug Development Technologies, 17, 285–291. https://doi.org/10.1089/adt.2019.943
  • Shah, K., Mujwar, S., Krishna, G., & Gupta, J.K. (2020). Computational design and biological depiction of novel naproxen derivative. Assay and Drug Development Technologies, 18, 308–317. https://doi.org/10.1089/ADT.2020.977
  • Sharma, A., Khanna, S., Kaur, G., & Singh, I. (2021). Medicinal plants and their components for wound healing applications. Future Journal of Pharmaceutical Sciences, 7(1), 1–13. https://doi.org/10.1186/S43094-021-00202-W
  • Sharma, K.K., Singh, B., Mujwar, S., & Bisen, P.S. (2020). Molecular docking-based analysis to elucidate the DNA topoisomerase IIβ as the potential target for ganoderic acid, a natural therapeutic agent in cancer therapy. Current Computational Aided Drug Design, 16. https://doi.org/10.2174/1573409915666190820144759
  • Sharma, V., Mujwar, S., Sharma, D., Das, R., Kumar Mehta, D., & Shah, K. (2023). Computational design of plant-based antistress agents targeting nociceptin receptor. ChemBioDivers, 20. https://doi.org/10.1002/CBDV.202201038
  • Shinu, P., Sharma, M., Gupta, G.L., Mujwar, S., Kandeel, M., Kumar, M., Nair, A.B., Goyal, M., Singh, P., Attimarad, M., Venugopala, K.N., Nagaraja, S., Telsang, M., Aldhubiab, B.E., Morsy, M.A. (2022). Computational design, synthesis, and pharmacological evaluation of naproxen-guaiacol chimera for gastro-sparing anti-inflammatory response by selective COX2 inhibition. Molecules, 27(20), 6905. https://doi.org/10.3390/MOLECULES27206905
  • Singh, N.K., Mujwar, S., & Garabadu, D. (2019). In silico anti-cholinesterase activity of flavonoids: A computational approach. Asian Journal of Chemistry, 31, 2859–2864. https://doi.org/10.14233/ajchem.2019.22153
  • Soni, N., Pardasani, K.R., & Mujwar, S. (2015). In silico analysis of dietary agents as anticancer inhibitors of insulin-like growth factor 1 receptor (IGF1R). International Journal of Pharmaceutics and Pharmaceutic Sciences, 7.
  • Wang, G., Yang, F., Zhou, W., Xiao, N., Luo, M., & Tang, Z. (2023). The initiation of oxidative stress and therapeutic strategies in wound healing. Biomedicine & Pharmacotherapy, 157, 114004. https://doi.org/10.1016/J.BIOPHA.2022.114004
  • Winarni, D., Husna, F.N., Syadzha, M.F., Susilo, R.J.K., Hayaza, S., Ansori, A.N.M., Alamsjah, M.A., Amin, M.N.G., Wulandari, P.A.C., Pudjiastuti, P., Awang, K. (2022). Topical administration effect of Sargassum duplicatum and Garcinia mangostana extracts combination on open wound healing process in diabetic mice. Scientifica (Cairo), 2022. https://doi.org/10.1155/2022/9700794
  • Wu, Y.K., Cheng, N.C., & Cheng, C.M. (2019). Biofilms in chronic wounds: Pathogenesis and diagnosis. Trends in Biotechnology, 37, 505–517. https://doi.org/10.1016/J.TIBTECH.2018.10.011

How to Cite

Ankita Sharma, Ozkan Fidan, Mohammed Er-rajy, and Mohamed El Fadili. Computational Design of Herbal Inhibitors of PAI-1 for Accelerated Wound Healing. J. Pharm. Technol. Res. Manag.. 2024, 12, 36-49
Computational Design of Herbal Inhibitors of PAI-1 for Accelerated Wound Healing

Current Issue

PeriodicityBiannually
Issue-1May
Issue-2November
ISSN Print2321-2217
ISSN Online2321-2225
RNI No.CHAENG/2013/50088
OA Policy

Publisher's policy of the journal at Sherpa UK for the submitted, accepted, and published articles. Click OAPolicy

Plan-S Compliance

To check compliance, one has to use the Journal Check Tool (JCT). This tool provided by cOAlition S (European funders) for the researchers (fundee) to check the compliance with the journal.

Recommend journal to your library

You can recommend the journal being a researcher or faculty member to your library. We will post a copy of the Journal to your library on your behalf at free of cost.
Click here: Recommend Journal

Preprint Arxiv Submission

The authors are encouraged to submit the author’s copy (preprint) to appropriate preprint archives e.g. https://arxiv.org and/or on https://indiarxiv.org or institutional repositories (e.g., D Space) before paper acceptance by the editor of Journal. After publications of the paper author(s) should mention the citation information, title and abstract along with DOI number of the publication carefully on the required page of the depository(ies).

Contact: Phone: +91-172-2741000, +91-172-4691800

Email : editor.jptrm@chitkara.edu.in;

Abstract and Indexing

Information

This work is licensed under a Creative Commons Attribution 4.0 International License.

Articles in Journal of Pharmaceutical Technology, Research and Management (J. Pharm. Tech. Res. Management) by Chitkara University Publications are Open Access articles that are published with licensed under a Creative Commons Attribution- CC-BY 4.0 International License. Based on a work at https://jptrm.chitkara.edu.in/. This license permits one to use, remix, tweak and reproduction in any medium, even commercially provided one give credit for the original creation.

View Legal Code of the above-mentioned license, https://creativecommons.org/licenses/by/4.0/legalcode

View Licence Deed here https://creativecommons.org/licenses/by/4.0/

Creative Commons License

Journal of Pharmaceutical Technology, Research and Management by Chitkara University Publications is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at https://jptrm.chitkara.edu.in//

Members