Ameliorative Potential of Aminophylline In Restrain Stress Induced Behavioural and Biochemical Alterations

Published: November 2, 2017

Authors

  • Rajneet KaurChitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
  • Manjinder KaurG.H.G Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India
  • Poonam AroraG.H.G Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India
Keywords
Aminophylline, Behavioural alterations, Biochemical alterations, Restraint stress

Abstract

This study is designed to investigate the attenuating prospective of aminophylline in immobilization stress generated behavioural changes in rats. Animals were exposed to restrain stress before being subjected to varying doses of aminophylline (1mg/kg, 2mg/kg and 4mg/kg). Behavioural changes were analyzed to assess the intensity and the degree of the stress, by estimating the changes in the exploratory behaviour, spontaneous activity and social behaviour using various paradigms. As a consequence of stress, the behavioral patterns so changed were assessed in the terms of changes in the locomotor activity, number of head dips and increased avoidance behaviour. Aminophylline (4mg/kg) modulated the stress produced changes in the behaviour and oxidative stress generated biochemical alterations in a significant manner (p<0.001). The results so obtained suggest that upon exposure to stress, animal behavioural patterns, biochemical markers levels changed and these changes wereefficiently modulated by aminophylline at therapeutic doses.

References

  • Abe, T., Nishii, Y., and Okada, Y. (2008) “Aminophylline increases parasternal intercostal muscle Activity during hypoxia in humans,” Respiratory Physiology & Neurobiology, 69–75.
  • Alleva E., Aloe L., and Bigi S., (1993) “An updated role for nerve growth factor in neurobehavioural regulation of adult vertebrates,” Review of Neurosciences, 4, 41–62. https://doi.org/10.1515/REVNEURO.1993.4.1.41
  • Barnes, P.J. (1998) “Mode of action of theophylline: a multiplicity of actions”. International Congress Series, 126, 39–45.
  • Blokland, A., Lieben, C. and Deutz, N.E., (2002) “Anxiogenic and depressive-like effects, but no cognitive deficits, after repeated moderate tryptophan depletion in the rat,” Journal of Psychopharmacology, 16, 39–49. https://doi.org/10.1177/026988110201600112
  • Brown, G.R. and Nemes, C., (2008) “The exploratory behavior of rats in the holeboard apparatus: Is Head-dipping a valid measure of neophilia”. Behavioural Processes, 78, 442–448. https://doi.org/10.1016/j.beproc.2008.02.019
  • Calamandrei G., Valanzano A. and Alleva E. (1991) “NGF and cholinergic control of behavior: Anticipation and enhancement of scopolamine effects in neonatal mice”. Developmental Brain Research, 61, 237–224. https://doi.org/10.1016/0165-3806(91)90136-7
  • Das, A., Kapoor, K., Sayeepriyadarshani, A.T., Dikshit, M., Palit G., Nath, C. et. al., (2000) “ Immobilization stress induced change in brain acetylcholinesterase activity and cognitive function in mice,” Pharmacological Research, 42, 213–217. https://doi.org/10.1006/phrs.2000.0678
  • Deisseroth, A., and Dounce, A.L., (1970) “Presence of high molecular weight form of catalase in enzyme purified from mouse liver,” Physiological Reviews, 50, 319–375.
  • Ellman, G.L. (1959) “Tissue sulfhydryl groups”. Archives of Biochemistry and Biophysics, 82, 4867–48677. https://doi.org/10.1016/0003-9861(59)90090-6
  • Fridovich, I., (1983) “Assaying for superoxide dismutase activity,” Annual Review of Pharmacology and Toxicology, 23, 29–222.
  • Harris, E.D., (1992) “Regulation of antioxidant enzymes”. The Journal of Nutrition, 122, 625–626.
  • Hayley, S., Mangano, E., Strickland, M., Anisman, A.H. (2008) “Lipopolysaccharide and a social stressor influence behaviour, corticosterone and cytokine level. Divergent actions in cyclooxygenase-2 deficient mice and wild type controls,” Journal of Neuroimmunology, 197, 29–36. https://doi.org/10.1016/j.jneuroim.2008.03.015
  • Johnson J.D., Campisi J., Sharkey C.M.,.Kennedy S.L, Nickerson M., Greenwood B.N. et. al. (2005) “Catecholamines mediate stress-induced increases in peripheral and central inflammatory cytokines,” Neuroscience, 135(4), 1295–1307. https://doi.org/10.1016/j.neuroscience.2005.06.090
  • Kaur, R.K., Jaggi, A.S., & Singh, N. (2010) “Studies on the Effect of Stress Preconditioning in Restrain Stress-induced behavioral alterations,” Yakugaku Zasshi 130(2), 215 221. https://doi.org/10.1248/yakushi.130.215
  • Kumar, P. and Kumar, A.(2009) “Neuroprotective effect of cyclosporine and FK506 against 3-nitropropionic acid induced cognitive dysfunction and glutathione redox in rat: Possible role of nitric oxide,” Neuroscience Research, 63, 302–314. https://doi.org/10.1016/j.neures.2009.01.005
  • Luck H., (1971) “Catalase in Methods of Enzymatic Analysis,” Wiley online Library, 885–893.
  • Madhyastha, S., Prabhu, L.V., Saralaya, V., Pai M.M. and Rai, R. (2008) “Effect of prenatal stress and serotonin depletion on postnatal serotonin metabolism in Wister rats,” Iranian Journal of Pharmacology & Therapeutics, 7 (1), 71–77.
  • Manchanda, R.K., Jaggi, A.S., & Singh, N. (2011) “Ameliorative potential of Sodium cromoglycate and diethyldithiocarbamic acid in restraint stress induced behavioral alterations in rats,” Pharmaclogical Reports, 63, 54–63. https://doi.org/10.1016/S1734-1140(11)70398-X
  • Miller A. H., Maletic V., and Raison C.L. (2009) “Inflammation and Its Discontents: The Role of Cytokines in the Pathophysiology of Major Depression” Biological Psychiatry, 65(9), 732–741. https://doi.org/10.1016/j.biopsych.2008.11.029
  • Nogawa S., Zhang F., Ross M.E., Iadecola C. (1997) “Cyclo-oxygenase- 2 gene expression in neurons contributes to ischemic brain damage,” Journal of Neurosciences, 17(8), 2746–2755.
  • Olmos, G., & Llado, J.(2014) “Tumor Necrosis Factor Alpha: A Link between Neuroinflammation and Excitotoxicity,” Mediators of Inflammation, 2014, 1–12. https://doi.org/10.1155/2014/861231
  • Rex, A., Voigt, J.P., Gustedt, C., Beckett, S., and Fink, H., (2004) “Anxiolyticlike profile in Wistar but not Sprague–Dawley rats in the social interaction test,” Psychopharmacology, 177, 23–34. https://doi.org/10.1007/s00213-004-1914-7
  • Roman, E., Gustafsson, L., Berg M. and Nylander, I., (2006) “Behavioral profiles and stress-induced corticosteroid secretion in male wistar rats subjected to short and prolonged periods of maternal separation”. Hormones and Behavior, 50, 736–747. https://doi.org/10.1016/j.yhbeh.2006.06.016
  • Toth, E., Avital, A., Leshem, M., Ritcher-Levin, G., and Braun, K.(2008). “Neonatal and juvenile stress induces changes in adult social behavior without affecting cognitive function,” Behavioural Brain Research, 190, 135–139. https://doi.org/10.1016/j.bbr.2008.02.012
  • Vassallo R., and Lipsky J. J. (1998) “Theophylline: Recent Advances in the Understanding of Its Mode of Action and Uses in Clinical Practice,” Mayo Clinic Process, 73, 346–354. https://doi.org/10.1016/S0025-6196(11)63701-4
  • Vesce, S., Rossi, D., Brambilla, L. and Volterra, A. (2007) “Glutamate release from astrocytes in physiological conditions and in neurodegenerative disorders characterized by neuroinflammation,” International Review of Neurobiology, 82, 57–71. https://doi.org/10.1016/S0074-7742(07)82003-4
  • Willcox, J.K., Ash, S.L., Catignani, G.L., (2004) “Antioxidants and prevention of chronic disease,” Critical Reviews in Food Science and Nutrition, 44, 275–295. https://doi.org/10.1080/10408690490468489
  • Wills, E.D., (1996) “Mechanisms of lipid peroxide formation in animal tissues,” Biochemical Journal, 99(3), 667–676. https://doi.org/10.1042/bj0990667

How to Cite

Rajneet Kaur, Manjinder Kaur, Poonam Arora. Ameliorative Potential of Aminophylline In Restrain Stress Induced Behavioural and Biochemical Alterations. J. Pharm. Technol. Res. Manag.. 2017, 05, 117-133
Ameliorative Potential of Aminophylline In Restrain Stress Induced Behavioural and Biochemical Alterations

Current Issue

PeriodicityBiannually
Issue-1May
Issue-2November
ISSN Print2321-2217
ISSN Online2321-2225
RNI No.CHAENG/2013/50088
OA Policy

Publisher's policy of the journal at Sherpa UK for the submitted, accepted, and published articles. Click OAPolicy

Plan-S Compliance

To check compliance, one has to use the Journal Check Tool (JCT). This tool provided by cOAlition S (European funders) for the researchers (fundee) to check the compliance with the journal.

Recommend journal to your library

You can recommend the journal being a researcher or faculty member to your library. We will post a copy of the Journal to your library on your behalf at free of cost.
Click here: Recommend Journal

Preprint Arxiv Submission

The authors are encouraged to submit the author’s copy (preprint) to appropriate preprint archives e.g. https://arxiv.org and/or on https://indiarxiv.org or institutional repositories (e.g., D Space) before paper acceptance by the editor of Journal. After publications of the paper author(s) should mention the citation information, title and abstract along with DOI number of the publication carefully on the required page of the depository(ies).

Contact: Phone: +91-172-2741000, +91-172-4691800

Email : editor.jptrm@chitkara.edu.in;

Abstract and Indexing

Information

This work is licensed under a Creative Commons Attribution 4.0 International License.

Articles in Journal of Pharmaceutical Technology, Research and Management (J. Pharm. Tech. Res. Management) by Chitkara University Publications are Open Access articles that are published with licensed under a Creative Commons Attribution- CC-BY 4.0 International License. Based on a work at https://jptrm.chitkara.edu.in/. This license permits one to use, remix, tweak and reproduction in any medium, even commercially provided one give credit for the original creation.

View Legal Code of the above-mentioned license, https://creativecommons.org/licenses/by/4.0/legalcode

View Licence Deed here https://creativecommons.org/licenses/by/4.0/

Creative Commons License

Journal of Pharmaceutical Technology, Research and Management by Chitkara University Publications is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at https://jptrm.chitkara.edu.in//

Members