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Received: September 08, 2025 Background: Alzheimers disease AD is a progressive neurodegenerative disorder characterized

Accepted: December 10, 2025 by synaptic dysfunction neuronal loss and cognitive decline. Increasing evidence identifies chronic
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Purpose: The purpose of this review is to critically examine recent pharmacological advances
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Pharmacological interventions, Anti-

. - Methods: A comprehensive literature survey was conducted using PubMed Web of Science and
inflammatory therapies, Drug development

Google Scholar to identify relevant preclinical and clinical studies focusing on neuroinflammation
targeted interventions in AD. Evidence related to cytokine and eicosanoid signaling inflammasome
activation microglial immunoreceptors nonsteroidal anti inflammatory drugs biologics and
nanotechnology based drug delivery systems was systematically analyzed.

Results: Mechanistic studies demonstrate that pharmacological modulation of microglial
phenotypes inhibition of pro inflammatory mediators TNF alpha IL 1 IL 6 and targeting pathways
such as NF kappa B NLRP3 inflammasome p38 MAPK JAK STAT and TREM2 can attenuate
neuroinflammatory cascades and reduce amyloid beta and tau associated neurotoxicity. However
clinical translation remains inconsistent due to limited blood brain barrier permeability off target
toxicity and patient heterogeneity. Advanced nanocarrier based delivery systems and intranasal
strategies show promise in improving brain bioavailability and therapeutic precision.

Conclusion: Targeting neuroinflammation represents a mechanistically robust avenue for disease
modification in AD. Future therapeutic success will likely depend on integrated multimodal
strategies combining precise inflammatory pathway modulation with advanced brain targeted drug
delivery and biomarker guided patient stratification.
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1. Introduction cellular mechanisms involved in the pathophysiology of

. L . AD as well as approved treatments that have a coarse effect
Innate immune system activation in the brain is known as

neuroinflammation and its main purpose is to defend the
central nervous system CNS from illness injury and viral

on both glutamatergic and cholinergic neurotransmission.
On the other hand a large number of recently developed

drugs are focused on changing the disease process itself b
assaults. It is well known that neurological conditions 5 &8 b Y

like AD are actively influenced by neuroinflammation (E
Zhang & Jiang, 2015). Although the pathophysiology
and etiology of the disease are constantly being improved
upon diagnostic capabilities and the development of
pharmaceutical therapies that might prevent or stop the
disease are still limited. AD is currently incurable. Despite
extensive preclinical and clinical research the drugs now in

influencing one or more of the numerous extensive brain
alterations brought on by AD. These alterations offer
possible targets for new drugs that aim to halt or reduce
the progression of the disease (Querfurth & LaFerla, 2010).

The multifactorial nature of AD is now widely
acknowledged. Widespread oxidative stress glutamate
excitotoxicity mitochondrial damage neuroinflammation
the development of neurofibrillary tangles NFTs and beta
amyloid AB deposition that results in senile plaques are its
pathological hallmarks (Jurciu ezal.,2022). Proinflammatory
cytokine signalling has a variety of consequences in

use only slightly alleviate symptoms in a small percentage of
patients and do not address the fundamental causes of the
illness (Bronzuoli er al., 2016). This failure is most likely

caused by our limited understanding of the molecular and both neuroprotection and neurodegeneration. Immune
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mediators are released when pro inflammatory signalling
is triggered which impairs neuronal function and results in
cell death. Neuroinflammation is also a result of a weak anti
inflammatory system. Many pathways including NFxB Akt
mTOR p38 MAPK caspase nitric oxide and COX influence
the pathophysiology of AD by inducing brain immune cells
such as microglia and astrocytes to release inflammatory
cytokines including chemokines interleukins and tumor
necrosis factor (Thakur ez al., 2023).

Cholinesterase inhibitors can be used for individuals
with AD at any stage and memantine can be used for those
with mild to severe dementia. The primary drugs that have
been authorized are donepezil galantamine memantine
and rivastigmine. But only when prescribed at the right
time may drugs enhance the standards of life (Scheltens
et al., 2018). In 2021 aducanumab the first monoclonal
antibody anti AB and the most recent AD drug was granted
authorization by the US Food and Drug Administration
FDA twenty years after memantine. Besides the whole thrill
this new drug is costly and its advantages are not quite clear
(Mafi er al., 2022). In regard to this the current study set
out to summarize the most important developments in
the pharmacological treatment of AD by reviewing the
most recent clinical trial data recorded by the US National
Institutes of Health with the hope of providing theoretical
background for drug discovery pipelines and future clinical
practice.

2. Pharmacological Basis of
Neuroinflammation in AD

According to Sierksma er al. (2020) AD is a prevalent
neurodegenerative illness that is typified by widespread
synaptic and neuronal loss memory loss and a marked
cognitive decline. The neuropathological features prevalent
in AD patients include extracellular amyloid plaques
formed from AB and intracellular NFTs composed of
hyperphosphorylated tau protein (Alzheimer’s Association,
2019). The amyloidogenic process of amyloid precursor
protein cleavage which is mediated by beta secretase and
gamma secretase is necessary for the synthesis of neurotoxic
AB (Si ez al., 2023).

The quad partite structure of synapses is made up of
an astrocytic process a dendritic spine which is directly
connected to a microglial cell and an axon terminal (Schafer
et al., 2013). The brain resident macrophages microglia
and astrocytes are vital for the development of neuronal
circuits and the homeodynamics of synapses in adulthood.
Supporting synaptogenesis the sprouting of dendritic and
axonal spines and controlling synaptic resilience depend on
astrocytes (Arranz & De Strooper, 2019; Cohen & Torres,
2019; Stojiljkovic ez al., 2019).

Genome wide association studies GWAS revealed more
than 40 susceptibility gene variations linked with an increased
risk of acquiring late onset AD (Kamboh, 2018). These
findings include immune response related genes namely CD33
ABCA7 CLU EPHA1 CR1 MS4A and HLA DRB5 HLA
DRBI. The significance of neuroinflammation is currently
supported by large scale GWAS which demonstrate that
people with unusual microglial immunoreceptor variations
TREM2 which encodes the triggering receptor expressed
on myeloid cells 2 protein expressed on cells of the myeloid
lineage have a significantly higher possibility of suffering from
late onset AD (Bradshaw ez /., 2013; Griciuc et al., 2013;
Guerreiro et al., 2013; Rathore ez al., 2018).

Itis also commonly acknowledged that the inflammation
characteristic of AD is strongly linked to oxidative stress
(Rojas Gutierrez ez al., 2017). The causes of increased ROS
production in the AD brain have been explored in the
majority of studies addressing oxidative damage in AD.
Transition metal catalyzed ROS generation may generally
play a significant role particularly when the metal is liganded
with AB3. Additionally AD is characterized by malfunctioning
mitochondria which can lead to increased ROS production
(Ganguly ez al., 2021). AD encodes aspects that influence
the glial removal of misfolded proteins and the inflammatory
response. Systemic inflammation and obesity are examples of
external variables that may disrupt immune functions in the
brain and hasten disease progression (Heneka ez al., 2015).

Overall inflammatory mediators such as cytokines
chemokines ROS and TNF alpha are released as a result of
the interaction between oxidative stress neuroinflammation
tau hypophosphorylation and beta amyloid buildup.
These mechanisms induce astrocytes and microglia which
leads to persistent neuroinflammation. The increasing
neurodegeneration and cognitive impairment observed in
AD are ultimately caused by the ensuing neuronal damage
and synaptic dysfunction as demonstrated in Figure 1.

This figure depicts the key interconnected biological
events underlying the initation and progression of
AD. Sustained neuroinflammation driven by activated
microglia and astrocytes results in the release of pro
inflammatory cytokines ROS and other inflammatory
mediators that collectively contribute to neuronal damage.
Persistent inflammatory signaling promotes abnormal
tau hyperphosphorylation and its aggregation into
neurofibrillary tangles while simultaneously increasing
amyloid beta A3 production and hindering its clearance. The
buildup of AB plaques and pathogenic tau further disrupts
synaptic function reduces neuronal plasticity and induces
mitochondrial impairment alongside heightened oxidative
stress. Over time these interrelated pathological mechanisms
converge to drive progressive synaptic deterioration neuronal
loss and the cognitive decline characteristic of AD.
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Figure 1: Pathophysiological Mechanisms Leading to AD

3. Pharmacological Interventions for
Neuroinflammation in AD

The two primary types of AD therapy are symptomatic
and disease modifying. Symptomatic therapies endeavor
to restore cognitive function or manage neuropsychiatric
symptoms without addressing the underlying biological
factors that cause neuronal death. On the other hand
disease modifying therapies are designed to change AD
neuropathology in order to produce neuroprotection
frequently via influencing a number of intermediary
pathways (Olloquequi ez al., 2022).

Although existing AD drugs fail to show excellent
clinical effectiveness many people have turned their focus to
lifestyle changes for AD prevention and therapy. The 2022
AD report identifies high risk variables for all phases of the
disease particularly insufficient exercise (Wang ez al., 2023).
However vigorous exercise can also worsen inflammation
by causing injured muscle to produce reactive nitrogen
species and ROS lowering immunological function causing
inflammation and depleting glycogen (Zhao, 2024).

Two novel drugs have been introduced more recently
with the intention of delaying the progression of AD.
These are aducanumab authorized by the FDA and sodium
oligomannate approved in China. These drugs concentrate

Activation of
microglia and
astrocytes by

neuroinflammation
triggering neurons
death

Synaptic
dysfunction

Alzheimer disorder

primarily on the cholinergic theory which was initially
laid out by Davies and Maloney in 1976 and used for the
moderate stages of AD (Davies, 1976).

Microglia can degrade AB plaques and provide
neuroprotection in AD (Merighi ez al., 2022). Microglia also
produce inflammatory cytokines in response to a variety of
pathways including NFkB Akt mTOR p38 MAPK caspase
nitric oxide and COX. The proliferator activated receptor
PPAR~ agonist pioglitazone decreases the inflammatory
cytokine IL 13 and promotes the phagocytosis of AB
(Ahmad ez al., 2019; Bagyinszky et al., 2017). Specific COX
2 inhibitors such as celecoxib and rofecoxib also reduce
neuroinflammation. The inflammatory mediators formed
by microglia are also strongly inhibited by indomethacin a
non selective COX inhibitor.

The mitophagy mechanism is believed to be extremely
helpful in minimizing microglia induced inflammation
because it encourages the phagocytosis of excess activated
microglial cells and other inflammatory cells (Dhapola ez al.,
2021). The development of TNF alpha synthesis inhibitors
is another approach that is considered for AD (Belarbi
et al., 2012). Thalidomide and its derivatives commonly
known as immunomodulatory imide medicines IMiDs
block the generation of TNF alpha cytokines by targeting
the 3’ untranslated region of TNF alpha mRNA. Currently
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marketed IMiDsare good candidates for neurological diseases
since they possess better blood brain barrier permeability
and bioavailability than similar anti inflammatory drugs
(Jung ez al., 2019).

Inflammatory diseases are increasingly being treated
by targeting the NLRP3 inflammasome (Jiang er al,
2020). Numerous strategies endeavor to decrease microglial
cytokine production and prevent the NLRP3 inflammasome

from activating (Zheng et al., 2020). In order to reduce
neuroinflammation oxidative stress and microglial activation
several pharmaceutical interventions including NSAIDs
glucocorticoids antioxidants cytokine inhibitors statins
and PPAR~ agonists function through different pathways.
By focusing on these pathogenic pathways these drugs aim
to protect neurons reduce disease progression and offer
pharmacotherapeutic benefits for AD as shown in Figure 2.
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Figure 2: Pharmacological Strategies Targeting Neuroinflammation in AD

This figure provides an overview of therapeutic strategies
designed to mitigate neuroinflammation in AD. It highlights
key biological targets including activated microglia reactive
astrocytes pro inflammatory cytokines and inflammasome
associated ~ signaling  pathways. Moreover illustrated
therapeutic classes such as NSAIDs corticosteroids cytokine
inhibitors NLRP3 antagonists TREM2 targeting agents
PPAR~ agonists and naturally derived anti inflammatory
compounds are shown to act through mechanisms that
suppress inflammatory responses and support neuronal
protection.

The intricacy of neuroimmune pathways in AD is
illustrated by the broad range of treatment options that
target neuroinflammation in the illness from NSAIDs
and cytokine inhibitors to advanced techniques such as
inflammasome blockers TREM2 agonists and senolytics.

Table 1: Therapeutic Strategies Targeting Neuroinflammation in AD

Translation into consistent clinical benefit remains a
significant barrier despite the fact that numerous treatments
show promise in preclinical and early clinical research.
This highlights the need for precision based and synergistic
therapy as shown in Table 1.

Moreover Table 1 provides a consolidated overview of
emerging and established therapeutic interventions designed
to modulate neuroinflammation in AD. It categorizes
interventions based on their molecular targets mechanisms
of action and reported outcomes across experimental and
clinical contexts (Jiang ez al., 2020). By integrating diverse
strategies from immune pathway inhibitors and metabolic
modulators to microglial signaling targets the table highlights
how multiple immunological nodes can be leveraged to
counter pathological neuroinflammatory cascades (Juan
et al., 2019; Jurciu et al., 2022).

Sr. Strategy Target Site Mechanism Therapeutic Agent | Outcomes References

No.

1 NSAIDs COX-1/ Lower prostaglandin- Ibuprofen, naproxen | Reduced early (Rivers-Auty
COX-2, mediated inflammation | (epidemiology; epidemiologic signals of | ez al., 2020)
prostaglandin | systemically and in brain | RCTs largely AD risk
synthesis (where BBB permeable) | negative)
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2 Corticosteroids Glucocorticoid | Broad suppression of Prednisone, Potent anti- (Shorey et al.,
/ systemic receptor cytokine production dexamethasone (not | inflammatory effect 2023)
immunosuppression | (broad) and immune activation | used chronically for

AD)
3 Minocycline / Microglial Tetracyclines reduce Minocycline (small | Preclinical benefit; (Kim & Suh,
tetracyclines activation, microglial activation trials / preclinical) | small/heterogeneous 2009)
MMPs, iNOS and inflammatory clinical results
mediators
4 TNEF-o blockade TNEF-o Neutralize TNF-o¢ Etanercept Anecdotal/small studies; | (Torres-
signaling to reduce neurotoxic (perispinal mechanism plausible but | Acosta et al.,
inflammation reports), infliximab | robust trials lacking 2020)
(experimental)

5 IL-1(3 pathway IL-13 / IL-1R Block IL-1-mediated Anakinra (IL-1R Implicated IL-1(3 (Kitazawa,
inhibitors neuroinflammation antagonist) — off- 2011)

label / small studies

6 JAK-STAT / IL-6 JAK-STAT / Prevent pro- Tocilizumab JAK/STAT implicated in | (Rusek e al.,
pathway inhibitors | IL-6 signaling | inflammatory (anti-IL6R), microglial responses 2023)

transcriptional small-molecule
responses downstream | JAK inhibitors
of cytokines (experimental)

7 NLRP3 NLRP3 Prevent activation of MCC950 Strong preclinical rescue | (Yin ez al.,
inflammasome inflammasome | caspase-1 — IL-18 (preclinical), of AD phenotypes; 2018)
inhibitors (microglia) / TL-103 release and OLT1177/ MCC950 used

pyroptosis dapansutrile preclinically and as
(clinical for other a scaffold for clinical
indications) candidates

8 TREM2 modulation | TREM2 Stimulate microglial AL002 (Alector) TREM2 is genetically (Schlepckow
(agonists) receptor on phagocytosis, survival, — TREM2 agonist | validated (risk variants); | ez al., 2023)

microglia and A( clearance; antibody (Phase AL002 showed target
alter inflammatory 1 — Phase 2 engagement, but
phenotype INVOKE program) | INVOKE-2 failed to
slow clinical decline —
highlights complexity/
timing

9 C5a receptor C5aR1 Block C5a-mediated PMX205/PMX53 | C5aR1 antagonism (Gomez-

(C5aR1) antagonists | (microglia/ chemoattraction and (preclinical); reduces gliosis, plaque Arboledas
astrocytes) pro-inflammatory small-molecule burden, and cognitive et al., 2022)
signaling antagonists deficits in multiple AD
(preclinical) mouse models

10 Complement C3/ | C3 activation | Reduce opsonization C3 inhibitors Cascade influences (Daborg et

CR3 modulation products, CR3 | and microglial (research stage) synaptic pruning in al., 2012)
receptor phagocytosis of aging and AD
synapses

11 CD33 / Siglec-3 CD33 Block inhibitory signals | Experimental CD33 variants (Zhao, 2019)
inhibitors (microglial that limit microglial A3 | antibodies/ associate with AD risk;

inhibitory clearance small molecules targeting aims to restore
receptor) (preclinical) microglial clearance
function

12 P2X7 receptor P2X7 (ATP Prevent ATP-driven P2X7 antagonists P2X7 drives (Tlles et al.,
antagonists receptor on inflammasome — preclinical/early | NLRP3 activation; 2019)

microglia) activation and cytokine | clinical inhibitors reduce

release

neuroinflammation in
models
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13 Q7 nicotinic o7-nAChR Activate cholinergic GTS-21 Cholinergic anti- (Hoskin,
acetylcholine (neurons & anti-inflammatory (encenicline — inflammatory 2019)
receptor agonists immune cells) | pathway; modulate earlier trials), other | pathway is a plausible

microglial cytokine agonists route to dampen
release neuroinflammation

14 S1P receptor S1P receptors | Modulate immune Fingolimod Preclinical studies (McGinley
modulators (e.g., on lymphocytes | cell trafficking and (approved for MS) | show reduced & Cobhen,
fingolimod) & glia microglial function — repurposing/ neuroinflammation and | 2021)

preclinical AD improved cognition in
studies AD models

15 PPAR~ agonists PPARA nuclear | Switch microglia to Pioglitazone (mixed | Metabolic (Landreth
(anti-inflammatory | receptor an anti-inflammatory/ | trials), other reprogramming reduces | et al., 2008)
metabolic shift) (microglia, metabolic phenotype PPAR~ modulators | inflammation; clinical

astrocytes) trials mixed/negative in
symptomatic AD

16 p38 MAPK p38 MAPK Reduce pro- Neflamapimod Some biomarker (Prins et al.,
inhibitors (e.g., (inflammatory | inflammatory kinase (clinical trials in and cognitive signals 2021)
neflamapimod) signaling in signaling and cytokine | AD/MCI) in early studies;

neurons/glia) production mechanism targets
neuroinflammatory
kinase cascades

17 JAK inhibitors JAK kinases Broadly suppress Tofacitinib/ JAK/STAT contributes | (Al-Kuraishy
(small molecules) (downstream cytokine-driven ruxolitinib to glial inflammatory et al., 2025)

of many transcriptional (repurposing response; potential for
cytokines) responses interest) — repurposing
preclinical/early
exploration

18 Nrf2 activators / Nrf2 Upregulate antioxidant | Dimethyl fumarate | Nrf2 activation reduced | (Sidiropoulou

antioxidant pathway | transcription genes; indirectly (approved in oxidative stress and et al., 2023)
factor reduce inflammasome MS), bardoxolone inflammation in
(antioxidant activation (experimental) preclinical AD models
response)

19 Senolytics (clear Senescent Remove senescent Dasatinib Clearing senescent cells | (Alshaebi
senescent glia) cells (p16/p21 | astrocytes/microglia + quercetin reduced inflammation et al., 2025)

markers) that secrete (preclinical), and cognitive decline in
inflammatory SASP other senolytics models
(preclinical/early)

20 Resolvin / pro- Resolution Promote active Resolvins, Pro-resolving mediators | (Fiala ez al.,
resolving lipid pathways resolution of protectins, reduced chronic 2015)
mediators (omega-3 | (ALX/FPR2, inflammation rather EPA/DHA neuroinflammation in
derivatives) etc.) than suppression supplementation models; human evidence

(clinical & mixed
preclinical)

21 Microbiome Gut microbiota | Modulate peripheral Probiotics, dietary | Gut microbes can (Zhang et al.,
/ gut-brain — systemic inflammation that interventions, modulate systemic 2025)
immunomodulation | immune influences brain fecal microbiota inflammation and

signaling immune tone modulation microglial states in
(research) animal models
22 Galectin-3 inhibitors | Galectin-3 Reduce pro- TD139/GB1107 Galectin-3 upregulated | (Tan ez al.,
(microglia/ inflammatory and (research stage) in neuroinflammation; 2021)
astrocyte fibrosis-like responses inhibitors show benefit

mediator)

in models
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23 HDAC inhibitors Histone Modulate transcription | Valproate (non- Epigenetic modulation | (Hull ez al,
(epigenetic anti- deacetylases of inflammatory selective), more can reprogram glial 2016)
inflammatory) (epigenetic genes; promote selective HDAC inflammatory responses

regulators) neuroprotective inhibitors in models
programs (preclinical)

24 IVIG / Polyclonal IgG | Broad IVIG trials in AD IVIG modulate (Dodel et al.,
immunomodulatory | / Fc-mediated immunomodulation, Fc | (largely negative) inflammation and clear | 2010)
antibodies modulation receptor engagement, AB

possible AB binding

25 Anti-amyloid Amyloid-8 Removal of AB reduces | Aducanumab, Anti-AB mAbs reduce (Piazza et al.,
antibodies plaques plaque-associated lecanemab plaques and alter local 2013)
(indirectly modulate | (amyloid inflammatory activation | — approved/ inflammation
inflammation) clearance) conditional; many

others in trials

26 Vaccination / active | Induce Elicit immune Experimental Conceptual and (Mahdiabadi
immunotherapy antibodies response that vaccines (research | early preclinical et al., 2022)
vs. inflammatory vs. cytokines/ | neutralizes pathological | stage) work only for many
mediators immune targets | inflammatory mediators neuroinflammation

(conceptual) targets

27 CCR2 / chemokine | CCR2, CCL2 | Reduce peripheral CCR2 antagonists | Chemokine axes recruit | (Bose & Cho,
signaling blockade chemokine immune cell infiltration | (preclinical) peripheral cells that 2013)

axis (monocyte | and pro-inflammatory may exacerbate CNS
recruitment) signaling in brain inflammation

28 Chaperone / Lipid sensing/ | Improve microglial Approaches Lipid metabolism in (Li ez al.,
lipid metabolism transport in lipid metabolism to targeting APOE microglia intersects 2022)
modulators microglia reduce inflammatory lipidation, with inflammation and
(TREM2-related (APOE/ phenotype progranulin TREM2 signaling;
lipid handling) TREM2 modulators progranulin drugs in

pathways) (clinical/preclinical) | development

29 BBB modulators / BBB Enhance delivery BBB shuttles, Better CNS delivery for | (Wei ez al.,
targeted delivery of | permeation of antibodies/small receptor- many biologics (e.g., 2025)
immunomodulators molecules to brain to mediated carriers TREM2 antibodies)

improve central anti- (preclinical/clinical
inflammatory action development)

4. Novel Drug Delivery and Nanotechnology
for AD

Nanotechnology, in conjunction with pharmaceuticals,
helps to overcome many obstacles faced by potential
drugs in treating neurodegenerative illnesses, such as AD
(Karthivashan ez a/., 2018). Treatment options are limited
primarily by the drug’s low oral solubility or inability to
pass through the BBB, as demonstrated in Figure 3 (Khalin
et al., 2014). Many techniques have been developed to cross
the BBB, including drug delivery systems, nanoparticles
(NDs), nanoemulsions, solid lipid NPs (SLNs), and solid
lipid carriers (Oestetling ez al., 2014; Sainsbury er al.,
2014). Pharmacotherapeutic failure can be caused by a
drug’s physicochemical properties, such as lipophilicity
or hydrophilicity, ionization, extensive metabolization,
inadequate bioavailability, large molecular weight, and
side effects (Fonseca-Santos et /., 2015). These constraints

can be eradicated by using intranasal administration,
which provides an alternate, non-invasive method of drug
delivery to the brain via BBB bypassing and direct transport
of drugs to the CNS (Kumar et 4, 2018; Zhang ez al.,
2022). Overall, the integration of nanotechnology with
conventional drug therapy offers a synergistic effect by
enhancing bioavailability, targeted delivery, and therapeutic
efficacy while minimizing systemic toxicity, as explained in
Table 2 and demonstrated in Figure 3.

This figure highlights the therapeutic advantages of
nanotechnology based approaches in AD treatment. Such
nanoformulations can enhance drug transport across the
BBB, enable targeted delivery to affected neuronal regions,
and provide controlled drug release profiles. In addition,
they help reduce systemic toxicity, improve drug stability,
and facilitate the codelivery of multiple therapeutic
molecules to achieve synergistic therapeutic effects.
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Table 2: Nanoformulations to Treat AD Induced by Neuroinflammation

Enhanced drug
permeability through
BBB

Increased drug loading
capacity

Localised neuro-

inflammatory response

- Improve solubility

>3 Accurate dose regimen

Increased synergistic
therapy possibilities

Sr. No. |Nanoformulations |Therapeutic |Particle size |Zeta Polydispersity | Entrapment | Outcome Ref(s)
agent (nm) potential  |index efficiency
(mV) (%)
1 SLN Metformin <200 _ 94.08 Decreased (Kumar et al.,
pyknotic neurons  |2023)
in hippocampus,
neuronal injury
2 NPs Rosiglitazone |124.6 + 12 [-17.5 + 5.54|0.242 70.65+5  |Increased brain (K. C. Kakoty,
permeability and | Marathe,
provided targeted |z al., 2021)
drug delivery
3 Poly (lactic co Ginsenoside |115 _ 0.081 70 Increased solubility | (Aalinkeel
glycolic acid) Rg3 and improved etal.,2018)
(PLGA) NPs neuroinflammation
condition
4 Nanoemulsion Empagliflozin |136.1 -23.9 0.281 _ Promising anti- (Alhakamy
inflammatory et al., 2024)
efficacy
5 NPs Rosiglitazone |88 + 12 -24.1+5 0.331 44.74-98.65 | Synergistic (K. C. Kakoty,
and improved Krishna, et al.,
vorinostat neuroprotective 2021)
efficacy
6 NPs a-Mangostin [94.26 + 4.54|-32 + 0.43 50.47 + 1.96 |Improved (Yao et al.,
therapeutic efficacy |2016)
in AD
7 NPs Aloe vera 76.12 6.27 +0.65 |0.313+£0.02 |90-95 Provided safe and  |(Sharma et al.,
coated effective response  |2024)
curcumin
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8 NPs Resveratrol 60-90 _ _ Modulate signaling | (Abozaid
Selenium pathways et al., 2022)
9 NPs Auranofin 101.5+10.3|_ 0.438 +0.12 |98 Induced positive (Kushawaha
neuromodulatory |ez al., 2024)
effect
10 Lipid based NPs ~ |Artesunate  |83.20 + 12.0{16.65 + 1.9 |0.1 + 0.02 81.8+7.8 |Reduced AB Tau |(Attia ez al,
levels, rescuing 2025)
hippocampal
neurons, and
improved cognitive
functioning
11 PLGA NPs Auranofin 101.5 + 10.3(27.5 +5.10 |0.438 +0.12 |98 Increased BBB (Kushawaha
permeability, et al., 2025)
triggered
inflammatory
agents
12 SLNs Chrysin 240.0 +4.79|-40.4 + 2.54| _ 86.29 + 3.42 |Improved AD (Vedagiri &
therapy Thangarajan,
2016)
13 Nanoemulsion Piracetam and | 183.6 -20.05 + 0.194 _ Enhanced targeted |(Nadeem
Shatavarin 1.03 drug delivery and  |ez al., 2025)
bioavailability
14 NPs Silibinin 88-105 _ 94.72 Improving anti- (Pan et al.,
Albumin inflammatory and |2021)
antioxidant efficacy

Table 2 compiles recent nanotechnology based formulations
evaluated foralleviating neuroinflammationin AD. Itoutlines
key physicochemical attributes, therapeutic agents, and
biological outcomes, highlighting how tailored nanosystems
enhance brain delivery, improve neuroprotective efficacy,
and overcome limitations associated with conventional drug
administration (Sierksma ez /., 2020; Thakur et al., 2023).

5. Clinical and Translational Challenges

The National Institute on Aging and the Alzheimer’s
Association established a research strategy that uses
pathologic tau, neurodegeneration AT(N) biomarkers, and
AB accumulation to characterize the biology of AD (Jack
et al., 2018). The three primary biomarkers include blood,

cerebrospinal fluid, and imaging biomarkers. In order to
identify both structural and functional brain activity in vivo,
molecular imaging methods such as magnetic resonance
imaging (MRI) and positron emission tomography (PET)
are used frequently (Mahaman ez 4/, 2022). In particular,
18 fluorodeoxyglucose induced entorhinal cortex atrophy
and hippocampus in the medial temporal lobe is assessed
by structural MRI (sMRI), PET imaging reveals tau
and AP buildup, and PET indicates decreased glucose
metabolism in the temporoparietal and posterior cingulate
lobes (Klyucherev ez al., 2022; Zhang et al., 2024). Thus,
despite significant advances in biomarker discovery and
neuroimaging, translating these clinical insights into
effective diagnostic and therapeutic strategies for AD
remains a major challenge, as demonstrated in Table 3.

Table 3: Clinical Trial Conducted to Treat Neuroinflammation Induced AD

the safety, tolerability, and effect of EI 1071 on

or severe AD

neuroinflammation in individuals with mild, moderate,

NCT No. Description Study type Phase Sponsor Year
NCT06745583 | Using an open label, exploratory, phase I, Interventional | Phase 2 Elixiron 2025
proof of concept clinical study to investigate Immunotherapeutics

(Hong Kong) Ltd.
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NCT04786223

The purpose of this research is to ascertain how well
PET CT imaging measures inflammation in the brain
and how it relates to AD

Interventional

Phase 2

Val Lowe et al.

2025

NCT04274998

By employing PET Computerized Tomography
imaging in individuals with AD, mild cognitive
impairment, or healthy controls to provide better
understanding of inflammation in the brain

Interventional

Early
Phase 1

University of

Pennsylvania

2025

NCT05911178

The goal of this work is to reassess how tau pathology,
synaptic density, and microglial activation interact. AD
patients will be paired with controls in a comparative,
interventional, controlled, non randomized trial

Interventional

Not
applicable

Centre Hospitalier St
Anne

2024

NCT03958630

The main goal is to determine if human patients with
neurodegenerative disorders show varying levels of
neuroinflammation in comparison to control subjects,
as determined by brain uptake of a third generation

[11C] ER176 TSPO ligand

Interventional

Phase 1

National Institute of
Mental Health

2024

NCT03548883

The permeability through the BBB evaluated using a
contrast enhanced brain MRI

Observational

Advent Health

2023

NCT02377206

The intention of the study is to evaluate the degree of
neuroinflammation in patients with mild to moderate
AD, as determined by the binding potential of [18F]
DPA 714, and its association with the extent of
cognitive loss throughout a 24 month follow up period

Interventional

Early
Phase 1

University Hospital

2022

NCT05378659

The overall objective of this research endeavor is to
detect the role of both pre existing neurodegenerative
and neural inflammation pathology in the risk and
etiology of postoperative cognitive dysfunction in 120
patients who undergo total knee arthroscopy

Observational

University of
Tennessee Graduate
School of Medicine

2022

NCT01009359

Radiation dosimetry in healthy volunteers and
neuroinflammation patterns in potential Alzheimer’s
patients using PET imaging with DPA 714 BAY85
8102 F 18

Interventional

Phase 1

Bayer

2013

Table 3 summarizes ongoing and completed clinical studies
investigating neuroinflammation in AD using therapeutic
interventions and advanced neuroimaging approaches.
Moreover, these trials employ modalities such as PET
based inflammation tracking, BBB permeability evaluation,
and targeted immunomodulatory agents to assess safety,
efficacy, and disease relevance in varied patient populations.
Collectively, these findings aim to bridge mechanistic
insights with clinically actionable diagnostic and therapeutic
strategies.

6. Conclusion

AD remains one of the most challenging neurodegenerative
conditions, with neuroinflammation emerging as a key
mechanism that causes hyperphosphorylation, neuronal
damage, and tau and amyloid beta accumulation.
Activated astrocytes and microglia produce a variety of
inflammatory mediators and cytokines that contribute

to the cascade of neuronal death, synaptic dysfunction,
and oxidative stress. Targeting these neuroinflammatory
cascades has emerged as an addressing therapeutic
approach for altering the condition rather than merely
providing symptomatic relief. Recent advances have been
explored, such as the use of natural anti-inflammatory
drugs like NSAIDs and phytochemicals, the suppression of
pro-inflammatory cytokines, regulation of eicosanoid and
arachidonic acid pathways, and microglial modulation.
However, despite encouraging preclinical findings,
clinical translation is hampered by difficulties related to
drug toxicity, poor selectivity, and blood—brain barrier
penetration. Crucially, the majority of already marketed
drugs only offer temporary symptomatic relief, and other
novel therapies are currently failing in late-stage clinical
studies because of inadequate effectiveness or safety issues.
Current investigations emphasize multimodal therapeutic
approaches that incorporate neuroprotective, antioxidant,
amyloid/tau-modifying, and anti-inflammatory effects to
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induce synergistic outcomes. Moreover, the development
of sophisticated drug delivery strategies, such as intranasal
formulationsand nanocarriers, has the potential to improve
anti-inflammatory drug brain targeting and help to
overcome pharmacokinetic constraints. Overall, growing
evidence suggests that addressing neuroinflammation is
not merely an adjunctive avenue but also a crucial disease-
modifying treatment approach in AD. Despite promising
preclinical findings, most anti-inflammatory approaches
have shown limited clinical translation. This is largely
attributed to poor penetration across the blood—brain
barrier, unintended systemic toxicity, variability in patient
responses, and the frequent failure of candidates during
advanced clinical trial phases. These limitations suggest
that therapies aimed at modulating neuroinflammation
should not be evaluated in isolation. Instead, their clinical
relevance depends on understanding how inflammatory
processes intersect with tau aggregation, amyloid
deposition, synaptic dysfunction, and oxidative stress.
Collectively, current evidence emphasizes the need for
integrated, mechanism-oriented therapeutic strategies
rather than solely symptom-driven interventions.

7. Future Perspectives

Despite substantial progress in understanding the
role of neuroinflammation in AD, translating these
pharmacological insights into effective clinical therapies
remains a major challenge. Future investigations should
prioritize delineating inflammatory pathways and their
mechanistic association with tau pathology and amyloid beta
progression, as this remains central to developing targeted
interventions. Furthermore, identifying more selective
molecular targets such as purinergic receptors, TREM2
signaling, fractalkine receptor pathways, and the NLRP3
inflammasome may offer refined therapeutic opportunities
compared to broad-spectrum anti-inflammatory agents.
Additionally, approaches such as immunotherapies,
complement inhibitors, and PPAR agonists hold promise
in shifting microglial function from a pro-inflammatory
to a neuroprotective phenotype, representing an emerging
therapeutic direction.

Moreover, intranasal delivery platforms, liposomal
formulations, and nanotechnology-based carrier systems
present promising avenues to enhance drug permeability
across the BBB while reducing systemic toxicity. Multimodal
therapeutic strategies combining anti-inflammatory agents
with antioxidants, neurotrophic molecules, and amyloid/
tau-modifying interventions are gaining prominence
for overcoming the limitations of single-agent therapies.
Similarly, biomarker-guided patient stratification, genetic
profiling, and personalized therapeutic frameworks will be

crucial to improving treatment responsiveness, particularly
given the heterogeneous nature of AD. As a result, well-
designed, long-term clinical studies that account for inter-
patient variability, disease stage, and long-term safety are
essential to translate preclinical insights into clinically
meaningful outcomes. More comprehensive, large-scale
investigations are required to validate these therapeutic
strategies and determine their true disease-modifying
potential in AD.
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