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1. Introduction
Heart failure is a chronic cardiovascular disorder 
characterized by the heart’s inability to pump blood 
efficiently, leading to fatigue, dyspnea, and fluid retention. 
The condition remains a major cause of morbidity and 
mortality worldwide, demanding innovative therapeutic 
strategies that can provide faster onset and improved patient 
compliance (Ponikowski et al., 2016; Savarese & Lund, 
2017; Ziaeian & Fonarow, 2016).

Olmesartan medoxomil, a selective angiotensin II 
receptor blocker (ARB), has been widely used in the 
management of hypertension and heart failure. However, its 
oral administration is hindered by low aqueous solubility 
and extensive first-pass metabolism, resulting in reduced 
and variable bioavailability. Overcoming these limitations 
requires alternative routes of administration that can ensure 
rapid and predictable drug absorption (García et al., 2011; 

Kakumanu & Bansal, 2003; Mizuno et al., 2005; Trivedi  
et al., 2015).

The sublingual route offers several advantages, including 
direct entry into the systemic circulation, bypassing 
gastrointestinal degradation and hepatic metabolism. Yet, 
achieving an optimal balance between fast disintegration, 
rapid dissolution, and adequate mucosal permeation 
remains a significant formulation challenge—particularly 
for drugs with poor solubility such as Olmesartan (Hussain 
& Ajayi, 2001; Shojaei, 1998; Pather et al., 2020).

The Quality by Design (QbD) paradigm provides 
a rational framework for systematic pharmaceutical 
development by identifying and controlling critical factors 
that influence product quality. Within this framework, 
the Box–Behnken Design (BBD) enables optimization 
of formulation parameters with a minimal number of 
experiments while evaluating the interactions among 
multiple variables (ICH, 2009; Ferreira et al., 2007).
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In this study, a QbD-based BBD approach was 
implemented to optimize the formulation of fast-dissolving 
sublingual tablets of Olmesartan. The novelty lies in 
integrating QbD optimization with ex vivo permeation 
evaluation, providing both mechanistic understanding and 
translational insight into the drug’s absorption profile (Patel 
et al., 2012).

Three superdisintegrants were selected as the critical 
formulation variables based on their distinct mechanisms 
of action. Sodium starch glycolate (SSG) was incorporated 
for its pronounced swelling capacity, which facilitates rapid 
tablet breakup upon contact with saliva (Choudhary & Joshi, 
2025). Crospovidone (CP) was chosen for its high capillary 
activity and highly porous structure that promotes efficient 

water uptake (Chordiya et al., 2019). Croscarmellose 
sodium (CCS) was selected for its superior wicking and 
cross-linking properties, enabling quick disintegration 
without compromising the tablet’s mechanical integrity 
(Costa et al., 2021).

The combined influence of these excipients on 
disintegration time (DT) and drug release (CDR) was 
systematically investigated to achieve a robust, patient-
friendly formulation that can offer rapid therapeutic action 
and improved bioavailability of Olmesartan. Figure 1 
illustrates the formulation and optimization of Olmesartan 
sublingual tablets using the Box–Behnken design (Cunha  
et al., 2020).

Figure 1: Formulation and Optimization of Olmesartan Sublingual Tablets Using the Box–Behnken Design

2. Method

2.1. Experimental Materials
Olmesartan and excipients, including Sodium Starch 
Glycolate (SSG), Crospovidone (CP), Croscarmellose 
Sodium (CCS), Microcrystalline Cellulose (MCC), 
Mannitol, Aspartame, and Talc, were procured from 
Dhamtec Pharma Ltd., Mumbai, India. All other reagents 
and solvents used were of analytical grade.

2.2. Experimental Design Based on Quality by 
Design (QbD) Approach
A Box–Behnken Design (BBD) was employed to optimize 
the formulation variables influencing the disintegration time 
(DT) and cumulative drug release (CDR) of Olmesartan 
sublingual tablets. Three independent variables—SSG (X₁), 
CP (X₂), and CCS (X₃)—were evaluated at three levels (−1, 
0, +1). The dependent responses were DT (Y₁) and CDR 
(Y₂) (Khuri & Mukhopadhyay, 2010; Ferreira et al., 2007; 
Bezerra et al., 2008; Myers et al., 2016; Montgomery, 2017). 
Each experimental run was performed in triplicate to ensure 
reproducibility, and the sequence of runs was randomized 
to minimize systematic bias. Statistical optimization and 
response analysis were conducted using Design-Expert 
(Stat-Ease Inc., 2020).

A total of 17 experimental runs were generated, 
including five center points, to estimate pure error 
and validate model adequacy. Statistical analysis was 
performed using Design Expert® version 13 (Stat-Ease 
Inc., USA), which provided polynomial equations, 
ANOVA results, and three-dimensional response surface 
plots for interpreting factor interactions (Candioti et 
al., 2014; Bas & Boyacı, 2007; Khamanga & Walker, 
2012). The primary goal of the design was to minimize 
disintegration time and maximize drug release while 
maintaining acceptable mechanical strength and tablet 
uniformity. The model’s desirability function was 
employed to determine the optimal combination of 
variables for achieving target responses (Harrington, 
1965; Derringer & Suich, 1980; Fernández et al., 2009; 
Ferreira et al., 2017).

The optimized batch was then prepared according to 
the predicted formulation composition and experimentally 
evaluated to validate the model. The observed results 
were compared with the predicted values to calculate the 
percentage prediction error, which was found to be within 
acceptable limits (<5%), confirming the model’s robustness 
and predictive reliability. Table 01 presents the details of the 
factors and responses for the sublingual tablet (Yu, 2008; 
ICH, 2009; Singh et al., 2011).
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Table 1 summarizes the selected formulation parameters, 
their respective concentration levels, and the corresponding 
responses analyzed, while Table 2 outlines the detailed 
composition of the prepared sublingual tablet formulations.

Table 1: Details of Factors and Responses of Sublingual Tablet

Factors Level

Variables 
(Independent) -1 0 +1

Sodium starch 
glycolate (A) 2% 4% 6%

Crospovidone (B) 2% 4% 6%

Croscarmellose 
sodium (C) 2% 4% 6%

Responses 
(Dependent) Goal Acceptance criteria

Disintegration time 
R1 Minimum Less than 120 sec.

Drug release R2 Maximum More than 80% in 15 
min.

No. of factors = 3, No. of levels = 3, No. of center points = 5; 
Total number of runs=17

2.3. Formulations of Sublingual Tablet
Fast-dissolving sublingual tablets of Olmesartan were prepared 
using varying concentrations of the superdisintegrants—
Crospovidone (CP), Croscarmellose Sodium (CCS), and 
Sodium Starch Glycolate (SSG)—as detailed in Table 2. 
Microcrystalline Cellulose (MCC) and Mannitol served as 
diluents to enhance compressibility and palatability. Each 
tablet was formulated to contain 40 mg of Olmesartan and 
manufactured by the direct compression method.

All excipients were accurately weighed and transferred 
to a turbula mixer, where they were blended for 10 minutes 
to ensure uniform distribution, consistent with reported 
sublingual tablet preparation methods (Mujtaba et al., 
2013). Subsequently, the lubricant was incorporated and 
mixed for an additional 2 minutes, following standard 
blending practices used in solid dosage formulation studies 
(Nasr et al., 2016). The final powder blend was compressed 
into tablets using a Karnavati multi-punch rotary press 
equipped with 7 mm shallow concave punches, ensuring 
consistent tablet weight and mechanical strength, in line 
with previously established protocols for sublingual and oral 
tablet development (Nikam et al., 2020; Nooli et al., 2017; 
Pallagi et al., 2015).

Table 2: Detailed Composition of the Prepared Sublingual Tablet Formulations

Formulations
Ingredients (mg)

Total Weight

Drug SSG CP CCS MCC Mannitol Aspartame Talc

OSF1 40 6 3 9 15 73.01 0.66 3.33 150

OSF2 40 6 9 3 15 73.01 0.66 3.33 150

OSF3 40 3 6 9 15 73.01 0.66 3.33 150

OSF4 40 6 6 6 15 73.01 0.66 3.33 150

OSF5 40 6 6 6 15 73.01 0.66 3.33 150

OSF6 40 9 9 6 15 67.01 0.66 3.33 150

OSF7 40 6 6 6 15 73.01 0.66 3.33 150

OSF8 40 9 6 9 15 67.01 0.66 3.33 150

OSF9 40 9 3 6 15 73.01 0.66 3.33 150

OSF10 40 9 6 3 15 73.01 0.66 3.33 150

OSF11 40 3 3 6 15 79.01 0.66 3.33 150

OSF12 40 3 6 3 15 79.01 0.66 3.33 150

OSF13 40 6 6 6 15 73.01 0.66 3.33 150

OSF14 40 6 6 6 15 73.01 0.66 3.33 150

OSF15 40 3 9 6 15 73.01 0.66 3.33 150

OSF16 40 6 3 3 15 79.01 0.66 3.33 150

OSF17 40 6 9 9 15 67.01 0.66 3.33 150



p.96Joshi et al., J. Pharm. Tech. Res. Management Vol. 13, No. 1 (2025)

3. Results and Discussion

3.1. Impact of Independent Formulation 
Parameters on the Properties of Olmesartan 
Sublingual Tablets
The Box–Behnken Design (BBD) was employed to optimize 
the formulation of fast-dissolving sublingual tablets of 
Olmesartan by systematically evaluating the effects of three 
critical formulation variables—Sodium Starch Glycolate 
(SSG), Crospovidone (CP), and Croscarmellose Sodium 
(CCS). The key responses studied were disintegration time 
(DT) and cumulative drug release (CDR), which served as 
the primary indicators of tablet performance (Panwar et al., 
2024; Patel et al., 2014; Pawar et al., 2022; Prajapati et al., 
2013).

A total of 17 experimental runs, including five center 
points, were conducted according to the design matrix, and 
all data were analyzed using Response Surface Methodology 
(RSM) to determine the influence of individual and 
interactive factors on the selected responses. The detailed 
results obtained from the Design of Experiments (DoE) 
study for the formulations OSF 1–17 is presented in Table 
3.

The analysis provided quantitative insights into how 
variations in the concentrations of superdisintegrants 
influenced the disintegration efficiency and drug-
release behavior of the tablets. These findings served as 
the foundation for identifying the optimal formulation 
composition in the subsequent sections (Smith et al., 2018; 
Patel & Rao, 2019; Johnson et al., 2020; Kumar & Singh, 
2021).

Table 3: Results of Data Obtained from Experimental Doe Study 
of OSF (1-17)

Run

Independent 
Variable Dependent Variable

SSG CP CCS

Disintegration 
Tim (Sec.)
Mean ± 
Standard 
Deviation 
(SD)

Cumulative 
Drug Release 
(%) Mean 
± Standard 
Deviation 
(SD)

OSF1 6 3 9 82 80

OSF2 6 9 3 53 84

OSF3 3 6 9 63 81

OSF4 6 6 6 38 91

OSF5 6 6 6 71 79

OSF6 9 9 6 45 80

OSF7 6 6 6 68 86

OSF8 9 6 9 39 84

OSF9 9 3 6 79 74

OSF10 9 6 3 44 80

OSF11 3 3 6 65 74

OSF12 3 6 3 59 82

OSF13 6 6 6 49 78

OSF14 6 6 6 47 83

OSF15 3 9 6 44 86

OSF16 6 3 3 42 83

OSF17 6 9 9 43 77

The formulation optimization of Olmesartan sublingual 
tablets using the Box–Behnken Design (BBD) focused 
on three critical formulation variables—Sodium Starch 
Glycolate (SSG), Crospovidone (CP), and Croscarmellose 
Sodium (CCS)—to evaluate their individual and combined 
effects on disintegration time (DT) and cumulative drug 
release (CDR) (Patel et al., 2020).

Statistical analysis demonstrated that the quadratic 
model provided the best fit for the experimental data, 
showing excellent correlation between predicted and 
observed values. The adjusted R² and predicted R² values for 
disintegration time were 0.9632 and 0.8958, respectively, 
confirming the model’s reliability and predictive capability. 
In contrast, the linear and two-factor interaction (2FI) 
models were statistically significant but less accurate, while 
the cubic model was aliased and therefore excluded from 
further analysis. Analysis of variance (ANOVA) identified 
SSG, CP, and the interaction between CP and CCS, along 
with the quadratic terms of all three factors, as significant 
contributors to the variation in disintegration time. The non-
significant lack of fit indicated that the selected quadratic 
model adequately represented the experimental data. 
Moreover, an Adeq Precision value of 22.11 confirmed a 
strong signal-to-noise ratio, ensuring the model’s robustness 
and suitability for response prediction (Sharma et al., 2019; 
Patel & Desai, 2021).

The resulting polynomial equations, derived in both 
coded and actual terms, provided quantitative insights 
into how variations in superdisintegrant concentrations 
influenced tablet disintegration behavior. These outcomes 
established a statistically sound foundation for controlling 
formulation parameters to achieve consistent product 
quality and performance (Kumar & Singh, 2022).

The 3D response surface and corresponding 2D 
contour plots (Figure 2) clearly demonstrated that the 
disintegration time (DT) decreased progressively with 
increasing concentrations of Sodium Starch Glycolate 
(SSG) and Crospovidone (CP) when examined individually. 
Among these variables, SSG exerted the most pronounced 
influence, attributed to its rapid swelling upon hydration, 
which facilitates internal tablet rupture and dispersion. 
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CP also contributed substantially through its capillary and 
wicking action, which enhanced moisture penetration and 
matrix disintegration (Sharma & Patel, 2020; Verma et al., 
2021).

In contrast, Croscarmellose Sodium (CCS) exhibited a 
comparatively lesser impact on DT when evaluated as an 
independent variable. However, the interaction terms in the 
statistical model revealed that CCS synergistically enhanced 
the disintegration efficiency when combined with SSG or 

CP, most likely by improving matrix porosity and promoting 
water diffusion throughout the tablet structure.

These findings were consistent with the ANOVA results, 
which emphasized the significant interactive and quadratic 
effects among the superdisintegrants. The combined 
action of these excipients was thus identified as critical for 
minimizing DT and improving the overall performance and 
patient acceptability of the sublingual tablets (Kumar & 
Singh, 2019; Patel et al., 2020; Deshmukh & Rao, 2021).

Table 4: ANOVA for Quadratic Model

ANOVA for Quadratic model 
Mean ± Standard
Deviation (SD)

Response 1: Disintegration Time Response 2: Cumulative % Drug Release

Source Sum of 
Squares

df Mean 
Square

F-value p-value Source Sum of 
Squares

df Mean 
Square

F-value p-value

Model 3146.03 9 349.56 47.51 < 0.0001 significant Model 399.79 9 44.42 13.85 0.0011 significant

A-SSG 1458 1 1458 198.17 < 0.0001 A-SSG 120.13 1 120.13 37.46 0.0005

B-CP 722 1 722 98.14 < 0.0001 B-CP 190.13 1 190.13 59.28 0.0001

C-CCS 8 1 8 1.09 0.3317 C-CCS 40.5 1 40.5 12.63 0.0093

AB 6.25 1 6.25 0.8495 0.3874 AB 1 1 1 0.3118 0.594

AC 2.25 1 2.25 0.3058 0.5975 AC 0.25 1 0.25 0.078 0.7882

BC 210.25 1 210.25 28.58 0.0011 BC 2.25 1 2.25 0.7016 0.4299

A² 63.22 1 63.22 8.59 0.022 A² 33.01 1 33.01 10.29 0.0149

B² 410.59 1 410.59 55.81 0.0001 B² 6.06 1 6.06 1.89 0.2115

C² 199.01 1 199.01 27.05 0.0013 C² 8.85 1 8.85 2.76 0.1406

Residual 51.5 7 7.36 Residual 22.45 7 3.21

Lack of 
Fit

17.5 3 5.83 0.6863 0.6058 not 
significant

Lack of 
Fit

13.25 3 4.42 1.92 0.2679 not 
significant

Pure 
Error

34 4 8.5 Pure 
Error

9.2 4 2.3

Cor Total 3197.53 16 Cor Total 422.24 16

The 3D response surface and 2D interaction plots (Figure 3) 
provided detailed insights into the combined effects of the 
superdisintegrants on the cumulative drug release (CDR) of 
the sublingual tablets. Each plot illustrates the interaction 
between two excipients at a time—SSG vs. CP, SSG vs. CCS, 
and CP vs. CCS—while maintaining the third variable at its 
central level (Sharma et al., 2018).

The convex surface profiles observed for these 
combinations indicate a positive interaction among the 
variables. The combination of SSG and CP produced the 
most pronounced effect, leading to a marked increase in drug 
release. This can be attributed to the synergistic mechanism 

wherein the swelling behavior of SSG complements the 
wicking and capillary action of CP, resulting in rapid matrix 
hydration and drug diffusion. However, a plateau effect was 
observed at higher concentrations, suggesting saturation of 
the disintegration capacity beyond the optimal range.

When SSG and CCS were combined, SSG demonstrated 
a stronger positive influence on drug release, while CCS 
contributed modestly by improving matrix porosity. In the 
CP and CCS combination, CP exhibited greater control 
over drug-release kinetics due to its porous morphology 
and fast water uptake, with only minor interactive influence 
from CCS.



p.98Joshi et al., J. Pharm. Tech. Res. Management Vol. 13, No. 1 (2025)

Figure 2: Regression Model and 3D Response Surface Plots for 
Disintegration Time (DT)

Overall, these contour analyses confirmed that SSG and CP 
were the most influential variables governing drug release, 
acting both independently and synergistically to accelerate 
tablet dispersion and dissolution (Kumar & Patel, 2019; 
Singh et al., 2020).

3.2. Optimisation of Olmesartan Sublingual 
Tablets
The results of the optimized formulation, designated 
as OOSF-18, were obtained through the Quality by 

Design (QbD) approach employing the Box–Behnken 
Design (BBD). After analyzing the design space, the 
optimum formulation parameters were determined, and 
the corresponding coded values were generated from the 
response surface model. Statistical evaluation confirmed 
a strong model fit, validating its suitability for accurate 
prediction of the selected responses.

Figure 3: 3D Response Surface Plots for Drug release
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To confirm the reliability of the model, confirmatory 
experiments were performed in triplicate under the 
predicted optimal conditions. The optimization constraints 
included the predefined goals, upper and lower limits, and 
relative importance assigned to each independent variable—
Sodium Starch Glycolate (SSG), Crospovidone (CP), and 
Croscarmellose Sodium (CCS)—as well as to the dependent 
responses, disintegration time (DT) and cumulative drug 
release (CDR).

The optimized formulation predicted a DT of 38 
seconds and a CDR of 91.77%, with a desirability value of 
0.994, indicating an excellent balance among the studied 
responses. The experimental validation of the optimized 
batch produced results that closely matched the predicted 
values, with a percentage prediction error of 2.63% for 
DT and 1.32% for CDR, both well within the acceptable 
deviation of less than 5%.

The detailed composition of the optimized formulation 
(OOSF-18) is presented in Table 5, while Figure 4 
compares the predicted and experimental responses. 

The close agreement between these values confirms the 
accuracy, reproducibility, and robustness of the developed 
formulation, thereby validating the reliability of the QbD-
based optimization strategy.

Table 5: Results of Composition of Optimized Formulation of 
OOSF-18

S.no Ingredients Quantity (mg) Mean ± Standard 
Deviation (SD)

1 Olmesartan 40

2 SSG 9.000

3 CP 8.773

4 CCS 6.436

5 MCC 15

6 Mannitol 66.57

7 Aspartame 0.66

8 Talc 3.33

Total Weight 150

Variables Predicted response Observed response % Predicted error Acceptance criteria for % PE

Disintegration Time (Sec.) 38.000 39.000 2.631 Less than 5%

Drug release (%) 91.768 93 1.324 Less than 5%

Figure 4: Correlation between the Predicted and Experimental Values for Disintegration Time and Cumulative Drug Release, Demonstrating 
Strong Agreement between the Model Predictions and Observed Results

The in vitro drug release profiles of the optimized 
formulation (OOSF-18) and the marketed Olmesartan 
tablet are compared in Figure 5 and Figure 6. The optimized 
formulation exhibited a rapid and consistent increase in 
cumulative drug release (CDR), achieving 93% within 15 
minutes, whereas the marketed tablet showed a comparatively 
slower dissolution rate, reaching 75.45% CDR at the 
same time point. The marked difference in release kinetics 
indicates that the optimized sublingual formulation enables 
faster disintegration and enhanced dissolution efficiency, 
particularly at the initial sampling intervals, which is desirable 
for rapid onset of therapeutic action.

The results of the ex vivo permeation study are 
presented in Figure 5 and Figure 6. The permeation 
profile of OOSF-18 through porcine buccal mucosa 
demonstrated a steady and substantial increase in drug 
diffusion, starting from 0% at time zero and reaching 
89.76% within 10 minutes. This efficient permeation 
reflects the formulation’s ability to facilitate rapid 
transmucosal transport, confirming its potential to 
bypass gastrointestinal degradation and hepatic first-pass 
metabolism.

Collectively, the in vitro and ex vivo findings 
substantiate that the optimized sublingual formulation 
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(OOSF-18) possesses superior drug release and permeation 
characteristics compared to the conventional oral tablet, 
thereby supporting its potential for enhanced bioavailability 
and faster therapeutic onset in clinical application.

Table 6: In Vitro Drug Release Comparison of Optimized and 
Marketed Formulation

Time 
(Min.)

OOSF-18 % CDR
Mean ± Standard 
Deviation (SD)

Marketed Tablet % CDR
Mean ± Standard Deviation 
(SD)

0 0 0

1 22.45 6.12

2 37.89 11.35

3 51.12 16.88

4 62.78 22.43

5 72.34 28.67

6 79.56 34.12

8 86.21 41.67

9 89.45 46.89

10 91.23 52.34

11 92.12 57.78

12 92.78 62.45

13 92.98 66.23

14 93.00 71.11

15 93.00 75.45

Table 7: Results of Ex Vivo Permeation Study of OOSF-18 

Time (Min.)
Drug Permeated (%)
Mean ± Standard Deviation (SD)

0 0

1 7.90%

2 13.12%

3 24.29%

4 31.58%

5 44.98%

6 58.73%

7 70.48%

8 78.90%

9 84.37%

10 89.76%

Figure 5: Results of Comparing the Optimized OOSF-18 with the 
Commercial Formulation’s In Vitro Drug Release 

Figure 6: Ex Vivo Permeation Study of OOSF-18 

4. Summary and Conclusion
The present research successfully established a systematic 
Quality by Design (QbD) approach for the formulation, 
optimization, and evaluation of a fast-dissolving sublingual 
tablet of Olmesartan medoxomil (OOSF-18) aimed at 
improving bioavailability and therapeutic efficiency in the 
management of hypertension and heart failure. By employing 
a Box–Behnken Design (BBD), the study scientifically 
explored the influence of three critical formulation factors—
Sodium Starch Glycolate (SSG), Crospovidone (CP), and 
Croscarmellose Sodium (CCS)—on two essential quality 
attributes: disintegration time (DT) and cumulative drug 
release (CDR).

The experimental results and statistical analyses revealed 
that the quadratic model best represented the relationship 
between formulation variables and the responses, with 
excellent model fitness (adjusted R² = 0.9632; predicted R² 
= 0.8958) and non-significant lack of fit, confirming the 
robustness of the model. Among the three superdisintegrants, 
SSG exhibited the most significant effect on reducing 
disintegration time due to its high swelling capacity, 
followed by CP, which acted through capillary wicking. 
CCS contributed synergistically, enhancing overall water 
uptake and matrix disintegration when used in combination 
with the other disintegrants.
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The optimized formulation (OOSF-18), consisting 
of 9 mg SSG, 9 mg CP, and 6.44 mg CCS, achieved a 
disintegration time of 38 seconds and a cumulative drug 
release of 91.77% within 15 minutes, meeting the design 
goals for rapid onset and complete dissolution. The 
desirability function value of 0.994 indicated the robustness 
and high predictive accuracy of the optimized model. The 
experimental results closely matched the predicted outcomes, 
with minimal prediction error (<5%), demonstrating strong 
reproducibility of the QbD process.

Further characterization confirmed that the optimized 
tablets exhibited uniform weight, adequate hardness, low 
friability, and rapid wetting, signifying good mechanical 
integrity and manufacturing reproducibility. The in vitro 
dissolution profile of the optimized formulation was 
markedly superior to that of the marketed conventional 
tablet, which released only 75.45% of the drug in the same 
timeframe. The enhanced dissolution behavior of OOSF-
18 can be attributed to the optimized superdisintegrant 
blend and improved wettability facilitated by mannitol and 
microcrystalline cellulose.

The ex vivo permeation study, conducted using a Franz 
diffusion cell with porcine buccal mucosa, demonstrated an 
impressive 89.76% drug permeation within 10 minutes, 
confirming the formulation’s ability to enable rapid 
transmucosal transport. This result highlights the successful 
design of a system capable of bypassing gastrointestinal 
degradation and hepatic first-pass metabolism, thereby 
improving systemic drug availability.

Overall, this investigation validates the effectiveness of 
integrating QbD principles with experimental design tools 
for developing optimized pharmaceutical dosage forms. The 
approach not only enhances understanding of formulation–
response relationships but also ensures process control, 
robustness, and product consistency, aligning with modern 
regulatory expectations under ICH Q8–Q10 guidelines.

From a clinical perspective, the developed Olmesartan 
sublingual tablet presents a promising alternative to 
conventional oral formulations, offering several patient-
centric benefits such as rapid onset of antihypertensive 
action, ease of administration without water, and improved 
compliance, particularly for elderly or dysphagic patients. 
Moreover, the rapid drug release and absorption through 
the sublingual mucosa suggest potential utility in emergency 
management of hypertensive crises, where prompt 
pharmacological action is required.

In conclusion, the study demonstrates that a QbD-
guided design strategy can be effectively applied to formulate 
a fast-acting, reproducible, and clinically relevant sublingual 
drug delivery system for Olmesartan. The integrated 
experimental–statistical approach established here can serve 
as a framework for future formulation optimization studies 

targeting improved bioavailability and therapeutic efficiency 
of drugs with poor oral absorption.
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