
J. Pharm. Tech. Res. Management Vol. 12, No. 1 (2024), pp.70–83

Journal of Pharmaceutical Technology 
Research and Management

Journal homepage: https://jptrm.chitkara.edu.in/

©Author(s) 2024. This article is published with open access at https://jptrm.chitkara.edu.in.
ISSN No.: 2321-2217(Print) ISSN No.: 2321-2225(Online); Registration No. : CHAENG/2013/50088

Vol. 12 | No. 1 | April 2024

1. Introduction
Muscle coordination is an intricate physiological process 
that involves the synchronization of the musculoskeletal 
and neurological systems to produce precise, intentional 
movements. The brain, spinal cord, peripheral motor units, 
and other components of the central nervous system (CNS) 
form a complex network that regulates it. This complex 
coordination is essential for preserving equilibrium, carrying 
out voluntary activities, and adjusting to environmental 
pressures. Through feedforward and feedback mechanisms 
(Halsband & Lange, 2006), the  CNS  regulates muscle 
coordination, varying motor unit firing rates to create 
smooth and efficient movements (Riley et al., 2008). 

Muscle coordination is severely disrupted by diseases 
of the CNS, such as neurodegenerative and psychological 
disorders (Lamptey et al., 2022). Motor performance is 
particularly affected by conditions including Huntington’s 
disease (HD), Parkinson’s disease (PD), Alzheimer’s disease 
(AD), and anxiety-related mental health disease (Buchman 

& Bennett, 2011). These disruptions can have a significant 
impact on patients’ quality of life by causing symptoms 
like tremors, muscle rigidity, and poor motor abilities. The 
fundamental mechanisms that connect CNS diseases to 
muscle coordination are still not well known, despite the 
critical role that motor difficulties play in many diseases.

Motor coordination depends on the cerebellum (Zhang 
et al., 2024), basal ganglia, and cortical motor regions, all of 
which are frequently impacted by CNS diseases. Figure 1 
illustrates the structural relationship between the spinal cord, 
spinal nerves, motor neurons, and muscle fibers (Garcia-
Retortillo et al., 2023), which is crucial for understanding 
motor coordination and the neurophysiological basis of 
movement control. In addition, motor dysfunction is 
largely caused by neurodegeneration, neurotransmitter 
imbalances, and disrupted brain connections. Figure 2 
illustrates the relationship between CNS disorders and 
muscle coordination, emphasizing how neurodegeneration 
and neurotransmitter imbalances contribute to motor 
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impairment and subsequent muscle coordination disorders 
(Duranti & Villa, 2024). For instance, neurofibrillary tangles 
in AD hinder motor planning and execution, whereas 
dopamine deficiencies in PD cause bradykinesia and rigidity. 

These pathophysiological alterations highlight the necessity 
of a thorough comprehension of the ways in which CNS 
diseases impact muscular coordination (Andrade-Guerrero 
et al., 2024).

Figure 1: The Motor Unit

Figure 2: The Relation between CNS Disorders and Muscle Coordination

The complex link between CNS disorders and impairments 
in muscular coordination is the focus of this review. In 
order to fill in current knowledge gaps and offer suggestions 
for possible diagnostic and treatment approaches, this 
study examines disease-specific mechanisms and current 
developments. A thorough comprehension of these 
relationships is essential for enhancing patient care and 
creating focused treatments to lessen motor dysfunction in 
diseases of the CNS.

2. CNS Disorders Affecting Muscle 
Coordination
Muscle coordination is significantly impacted by diseases 
of the  CNS, which disrupt the intricate  balance between 
musculoskeletal function and neural control. These diseases 
can be broadly divided into neurodegenerative and psychiatric 
disorders, each of which has unique clinical characteristics 
and mechanisms (Birbeck et al., 2015).  Developing focused 
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diagnostic and treatment approaches requires an understanding 
of how CNS disorders interact with motor impairments.

2.1. Psychiatric Disorders
Psychiatric diseases may present with mild but debilitating 
deficits in motor coordination. The intricate relationship 
between emotional control and motor performance is 
highlighted by anxiety and depression in particular. As 
neurotransmitter imbalances and decreased neuroplasticity 
are strongly linked to depression, they affect motor planning 
and execution. These conditions demonstrate how emotional 
dysregulation can have a major effect on one’s ability to 
perform physically, resulting in symptoms including fatigue, 
rigid muscles, and impaired coordination (Peralta & Cuesta, 
2017).

2.1.1. Anxiety

Anxiety is pronounced to be the most frequent CNS disorder 
encountered in clinical practice (Parada et al., 2014). It is 
a condition of increased fear and  concern that might be 
brought on by particular stressors or everyday challenges. It 
involves excessive and continuous fear or anxiety that stands 
in the way of day-to-day tasks. To describe anxiety behaviors, 
several genetic, behavioral, cognitive, psychoanalytic, 
biological, and psychodynamic theories have been put 
forth. Several anxiety behaviors include panic attacks with 
agoraphobia, social phobia, specific phobias, post-traumatic 
stress disorder (PTSD), obsessive-compulsive disorder 
(OCD), and generalized anxiety disorder (GAD) (Bystritsky 
et al., 2013).

•	 Mechanisms: Amygdala Connectivity and Muscle 
Tension

Anxiety disorders are characterized by elevated amygdala 
activity and changed functional connections with other 
brain regions, such as the cerebellum and prefrontal cortex. 
Increased muscular tension is a result of this dysregulation, 
which affects how fear is processed and how emotions 
are controlled (Rauch et al., 2003). While the amygdala’s 
central nucleus governs species-specific fear responses 
through connections to the brainstem, hypothalamus, 
and cerebellum, the amygdala’s basolateral complex 
processes sensory-related fear memories. The somatic signs 
of anxiety, such as tense and tight muscles, are caused by 
these pathways (Etkin et al., 2009). Studies have indicated 
that chronic muscle tension is linked to GAD (Bamalan et 
al., 2023), frequently acting as a distinguishing symptom. 
Long-term autonomic nervous system activity and elevated 
arousal levels cause this tension, which reflects the complex 
relationship between psychological stress and physical 
symptoms (Pluess et al., 2009).

•	 Symptoms: Muscle Rigidity and Somatic Indicators
Muscle rigidity, restlessness, and exhaustion are common 
somatic symptoms observed by patients with anxiety 
disorders. GAD is characterized by tense muscles, especially 
in the jaw, neck, and shoulders. These symptoms lead 
to a vicious cycle of worry and physical impairment by 
aggravating psychological distress in addition to physical 
discomfort. Research indicates a direct correlation between 
pathological concern and muscle tension, underscoring the 
diagnostic utility of this condition (Im et al., 2023).

•	 Tools: Electromyography (EMG) in Assessment
An effective method for evaluating muscular tension and 
activity in anxiety disorders is electromyography (EMG). 
EMG provides quantifiable information on muscular 
rigidity and general tension by measuring the electrical 
activity of muscles both during contraction and at rest. 
For instance, patterns of persistent tension linked to 
worry can be identified by measuring frontalis muscle 
activity (Carvalho et al., 2023). Subsequently, EMG-based 
clinical research has shown that biofeedback and relaxation 
methods can dramatically ease tense muscles in those who 
are nervous. When paired with medication, these methods 
present effective ways to manage the physical manifestations 
of anxiety disorders. Despite these developments, more 
investigation is required to clarify the exact processes via 
which anxiety affects muscular coordination and to improve 
diagnostic instruments for wider therapeutic use (Fazzari  
et al., 2023; Ferreira et al., 2024).

Additionally, one of the studies involving healthy 
individuals had shown a significant reduction in the level 
of anxiety after subsequent relaxation training in a regulated 
environment. These results assured reproducibility between 
individuals. Another study involving nervous individuals 
found that the significance of this association was not 
established. Hence, the relation between anxiety and muscle 
tension has some limitations. However, new studies propose 
that the link between anxiety and body tension is significant 
(Sabharwal, 2014). Additionally, muscle relaxants have 
proven effective in reducing anxiety levels. Yet, the exact 
mechanism by which muscle relaxants alleviate anxiety 
remains unclear.

2.1.2. Depression

Depression is a common mental health condition 
characterized by persistent feelings of sadness, diminished 
interest or enjoyment in activities, and a number of 
cognitive and physical symptoms that interfere with day-
to-day functioning. Individuals with depression frequently 
experience fatigue, alterations in sleep patterns, and challenges 
with focus or decision-making (Iyer & Khan, 2012).
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•	 Mechanisms: Neurotransmitter Dysregulation and 
Motor Impairments

Dysregulation of the noradrenergic, dopaminergic, and 
serotonergic systems (Moncrieff et al., 2023), all of which are 
essential for motor control, is strongly linked to depression. 
Neurotransmitter imbalances reduce motor functioning and 
execution by disrupting communication between motor 
regions, including the prefrontal cortex and basal ganglia. In 
addition, decreased neuroplasticity and synaptic connection 
have also been found in depressed people, which may 
exacerbate motor dysfunction (Namiot et al., 2024).

•	 Symptoms: Fatigue, Muscle Weakness, and 
Coordination Deficits

Muscle weakness, poor coordination, and persistent fatigue 
are common somatic signs of depressive disorders. Due 
to slower motor reflexes and decreased physical stamina, 
patients frequently report having trouble completing 
daily tasks (Dobrek & Głowacka 2023). Widespread 
musculoskeletal discomfort is a symptom of fibromyalgia, 
a disorder that frequently coexists with depression and 
worsens motor impairments (Giorgi et al., 2024).

•	 Tools: Kinematic Analysis in Diagnosis
A useful diagnostic technique for depression is kinematic 
analysis, which assesses motor function and movement 
patterns. Since motor impedance is an aspect of depression, 
using this tool, researchers were able to justify the 
antidepressant motor effect. To illustrate the connection 
between depression and fine motor performance, this 
tool was used in patients suffering from depression and 
compared to patients taking antidepressants. Irregular 
patterns in analysis were higher in depressed patients, 
depicting basal ganglia dysfunction and/or deficient activity 
of the sensorimotor cortex and the supplementary motor 
area as potential substrates of hand-motor instabilities in 
depressed patients (Mergl et al., 2007). Furthermore, in one 
speedy drawing program including 37 depressed and 37 
healthy individuals, a graphic tablet for kinematic analysis 
was used. Both groups had equal distribution with regard 
to gender, age, and education level. The outcome from 
the study has shown that depressed subjects had slower 
motor performance. Depressed subjects had an abnormally 
slower enactment when copying complex figures as fast as 
possible (Mergl et al., 2007). These results illustrated that 
depressed subjects had lower mental performance and 
motor insufficiencies, which played a major role in this 
retardation (Du et al., 2020). These results highlight how 
useful kinematic analysis is for detecting motor deficits and 
tracking the effectiveness of treatment.

Moreover, the motor and psychological symptoms 
of depression can be alleviated by new treatments such as 

cognitive-behavioral therapies coupled with exercise. To 
maximize these strategies and comprehend the reciprocal 
association between mood disorders and motor coordination 
deficiencies, more research is necessary (Abdollahi et al., 
2017).

2.2. Neurodegenerative Disorders
Neurodegenerative diseases are progressive, 
chronic  conditions that cause neurons to deteriorate. 
Because of anatomical and functional abnormalities in the 
CNS, these diseases severely impair muscular coordination. 
Patients’ quality of life is greatly diminished as a result of 
the impairment of neuronal health, which affects motor 
planning, execution, and overall performance. The three 
most researched neurodegenerative diseases that impact 
motor coordination are HD, PD, and AD (Dugger & 
Dickson, 2017).

2.2.1. Alzheimer’s Disease

AD is a neurodegenerative disease that starts slowly and 
exacerbates over time. It can result in a partial or severe loss 
of memory and cognitive abilities like thinking, reasoning, 
and social behavior (Mani et al., 2022). Usually results in 
impairing a person’s normal life, bringing difficulties in 
interaction and communication (McMaster et al., 2024; 
Tchekalarova & Tzoneva, 2023). Symptoms may vary, 
but the most common and noticeable is the inability to 
remember conversations (forgetfulness) and recall familiar 
routes (Andrade-Guerrero et al., 2023). AD can manifest 
as poor reasoning, failure to make simple judgments, and 
difficulty in speaking or reading.

•	 Gray and White Matter Integrity
In addition to being frequently linked to memory loss and 
cognitive decline, AD also severely impacts motor abilities 
(Hebert et al., 2011). Amyloid plaques and neurofibrillary 
tangles are pathological characteristics that lead to the 
gradual atrophy of gray matter in important areas such as the 
frontal cortex and hippocampus. Planning and execution of 
motions are hampered by this deterioration. To make motor 
dysfunction even worse, white matter injuries also interfere 
with the neuronal connections between motor and sensory 
areas. These structural abnormalities have been linked in 
studies to challenges with fine motor skills, locomotion, 
and postural balance that worsen as the disease worsens 
(Baumgartner et al., 1998).

•	 Imaging Biomarkers for Motor Impairments
In order to detect motor-related abnormalities in AD, 
advanced imaging techniques are essential. Advanced 
imaging techniques such as Positron Emission Tomography 



ISSN No.: 2321-2217(Print) ISSN No.: 2321-2225(Online); Registration No. : CHAENG/2013/50088

p.74Harshpreet kaur, Navneet Khurana et al., J. Pharm. Tech. Res. Management Vol. 12, No. 1 (2024)

(PET), Magnetic Resonance Imaging (MRI), diffusion 
tensor imaging (DTI), and electrophysiology are used to 
analyze brain activity in both simple and complex tasks 
(Agosta et al., 2010; Halsband & Lange, 2006). Early 
structural and functional alterations can be detected with 
the use of modalities including PET, DTI, and MRI. For 
example, poor motor coordination and unstable gait are 
associated with decreased fractional anisotropy in white 
matter pathways. Additionally, these imaging indicators 
make it easier to stage diseases and assess treatment options 
for reducing motor deterioration (Oschwald et al., 2021; 
Zhai et al., 2020). Furthermore, in recent research, it has 
been demonstrated there is a significant link between AD 
and body mass index (BMI), suggesting that BMI is one of 
the first signs of AD, and when BMI is affected, a patient’s 
muscle mass and body fat are considered affected to some 
extent. In morphological studies, a huge relation between 
muscular structural damage and lower muscular energy was 
discovered, and therefore, it resulted in lower performance. 
Dual-energy x-ray absorptiometry (DXA) or imaging 
modalities can be used to assess muscle mass for this purpose 
(Verdijk et al., 2010).

Additionally, execution actions of the motor unit are 
performed by muscle (effector organ); thus, any impairment 
to the CNS or PNS would partially or completely affect 
muscle tone without changing muscular integrity. Thus, 
assessing muscle structure is crucial to clarify the primary 
decrease in muscle performance in AD (Hairi et al., 2010). 
Numerous studies have demonstrated the relationship 
between low grasping strength and chances of developing 
AD (Buchman et al., 2007). In one research study, axial 
and appendicular strength was determined, the outcomes 
of which proposed the association of AD with a decline 
in strength. Thus, from different perspectives, we can link 
reduced strength and impaired muscle structure as a primary 
reason for declining muscle performance and a prerequisite 
for AD, as well as a decline in cognition (Boyle et al., 2010).

2.2.2. Parkinson’s Disease

PD is regarded as a slowly progressive CNS degenerative 
condition characterized by a number of motor and non-
motor symptoms (Jankovic, 2008). It mainly results 
from the degeneration of dopaminergic neurons in the 
substantia nigra, an essential area of the basal ganglia. PD 
causes movement impairment, which results in affecting 
the usual functioning of an individual. Though PD can 
be connected to a variety of primary indicators, fewer 
symptoms are spotted early and commonly experienced by 
many patients. These symptoms for PD can be categorized 
into motor and non-motor symptoms. Motor symptoms 
affect movement, including tremor (a rhythmic shaking), 

rigidity or stiffness (inelasticity) of the muscles, akinesia, 
hypokinesia, postural instability, and slowness of movement 
(bradykinesia). Bradykinesia, akinesia, tremor, and muscle 
stiffness have been known to respond to dopamine therapy 
and hence are described as a hallmark of the disease (Ferreira 
& Massano, 2017; Tinelli et al., 2016). Many patients with 
PD may experience problems with walking, coordination, 
posture, and balance. Most common non-motor symptoms 
of PD include depression, constipation, fatigue, and anxiety 
(American, 2016).

•	 Neurodegeneration and muscular coordination
The association between neurodegeneration and muscular 
performance is well established in several studies. In PD, 
motor symptoms can be explained in expressions of motor 
coordination, which depict movement, limb locus, and 
speed of movement. As the disease’s progression results 
in the death of neurons in the pars compacta region of 
the substantia nigra, one of the nuclei that constitute the 
basal ganglia (BG). These neurons are responsible for the 
transition of dopamine to another BG nucleus (Gamborg 
et al., 2023; S. Zhai et al., 2023). Hence, the death of these 
neurons causes impairment of these neuronal circuits that 
include the BG and motor cortical areas. As a result of these 
changes, patients’ posture and gait are impaired (Mazzoni 
et al., 2012). Also, the balance between excitatory and 
inhibitory pathways in the basal ganglia is disrupted when 
dopamine levels are low, which is crucial for controlling 
smooth and precise motor activities. This leads to impaired 
motor coordination, delayed initiation of movement, and a 
loss of fine motor control (Kravitz et al., 2013).

•	 Impact on Muscle Coordination
Alterations in motor unit recruitment and firing patterns 
in PD  have a substantial impact on muscle coordination. 
When dopamine signaling is disturbed, it impairs motor 
planning and execution, leading to bradykinesia, or slowness 
of movement. Another characteristic of PD is rigidity, which 
limits the range of motion and fluidity of movement and 
is caused by hyperactivity in stretch reflexes and increased 
muscle tone (Wichmann & Dostrovsky, 2011). These 
alterations show up as trouble completing activities like 
writing or buttoning garments that call for precise and 
coordinated muscle movement.

A late-stage PD symptom that increases the risk of falls 
is postural instability, which is brought on by an inability to 
integrate motor responses with sensory feedback. Different 
research indicates people with PD  exhibit shorter strides, 
shuffled steps, and a difficulty to effectively change their 
movement’s direction or speed (Guo et al., 2022). The 
quality of life is greatly impacted by this steady decline in 
motor functioning (Dalise et al., 2020).
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2.2.3. Huntington’s Disease

HD is a hereditary disorder causing neurodegeneration 
resulting from extension of a polyglutamine expansion 
within the huntingtin protein (HTT) (Rana et al., 2024). 
Neurological indications, which include cognitive, motor, 
and psychiatric instabilities, are the result of neuron 
degeneration, which predominantly spreads in the basal 
ganglia and cerebral cortex (Chaganti et al., 2017). Patients 
suffering from HD have shown several peripheral organ 
dysfunctions after having severe weight loss, HD-related 
cardiomyopathy, and skeletal muscle wasting (Wilson et al., 
2017). A major symptom for HD is skeletal muscle wasting; 
despite being a major symptom, the mechanism underlying 
it remains unclear (Zielonka et al., 2014).

•	 Striatal and Cortical Degeneration
In HD, neurodegeneration usually extends to striatal nuclei, 
basal ganglia, and cerebral cortex, resulting in neurological 
symptoms including motor, cognitive, and psychiatric 
difficulties (McColgan et al., 2017; Novak & Tabrizi, 2010). 
This atrophy severely damages fine motor skills and voluntary 
motor control. Motor coordination becomes much more 
challenging as the disease progresses and individuals develop 
chorea (erratic, uncontrollable movements) and dystonia 
(sustained muscle spasms). These clinical features, including 
behavior alteration, motor difficulties, dementia, and weight 
decline, generally progress over 15 years until the individual 
succumbs to the disease (Walker, 2007).

•	 Skeletal Muscle Wasting and Mitochondrial 
Dysfunction

HD is linked to peripheral symptoms such as mitochondrial 
dysfunction  and skeletal muscle atrophy in addition to 
CNS deterioration. Physical impairment is exacerbated by 
diminished muscle mass and impaired energy metabolism, 
according to research. The significance of comprehensive 
treatment strategies that address both central and peripheral 
deficits is highlighted by these systemic consequences. In HD 
patients, addressing mitochondrial dysfunction may open 
the door to better motor coordination and general physical 
wellness (Burtscher et al., 2021). In one clinical study 
containing 6 groups of 20 people with HD, the patients 
were observed having lower muscular energy by 50% on 
average when compared to healthy individuals (Busse et al., 
2008). Furthermore, different researchers have reported an 
abnormality in the mitochondrial performance of the CNS 
and skeletal muscles in Huntington’s patients (Kasner et al., 
2013). In two groups of subjects with symptomatic and 
presymptomatic HD, patients mitochondrial ATP release 
declines by 44% and 35%, respectively, on recovery from a 
workout. Moreover, they displayed significant deficiency in 
the mitochondrial oxidative metabolism, which could play 

a major part in the HD-related muscle impairment (Jędrak  
et al., 2017; Lodi et al., 2000).

Moreover, HD patients have shown a development 
of motor impairment progression over time (van Hagen 
et al., 2017). In most of these cases, the origin of motor 
insufficiency is not well understood. In a study of 
asymptomatic HD gene carriers and evident HD, a reaching 
exercise revealed movement jerkiness, which marked the 
progression of presymptomatic HD. Furthermore, in HD, 
external error can’t be corrected, and therefore this feedback 
failure can affect movement termination, which portrays the 
motor control problems in premature HD (Burtscher et al., 
2024).

2.3. Amnesia, Dementia, and Cognition
2.3.1. Amnesia: Impacts on Procedural and Motor 
Memory

Amnesia, either neurological or functional, can be described 
as having a problem acquiring new information and a partial 
or complete memory retention deficit (Ledoux & Cloutier, 
2012). It is memory loss brought on by disease, trauma, 
or damage that affects the parts of the brain that process 
memories, including the hippocampus. Functional amnesia 
is known as a psychiatric disorder, without the involvement 
of a specific brain structure or area whose impairment is 
recognized for triggering the illness (Berry & Shanks, 2024). 
On the other hand, neurological amnesia is the outcome 
of bilateral impairment to areas of the brain, crucial for 
memory storage, processing, or retention (the limbic 
system, involving the hippocampus in the medial temporal 
lobe) (Smith et al., 2013). In addition, it can also stem from 
different neurodegenerative disorders that directly affect 
the body’s general motor performance (Barrett, 2002). It is 
largely a cognitive illness, but when procedural memory is 
compromised, it can also have an indirect effect on motor 
coordination. Patients may have trouble walking or using 
tools, two activities that call for developed motor skills. 
Research indicates difficulties in relearning fundamental 
movements following brain loss may result from amnesia 
that affects motor-related cortical areas.

2.3.2. Dementia: Cognitive Decline and Motor 
Impairments

Dementia is a gradual neurodegenerative condition 
characterized by cognitive and functional decline. It is 
often characterized by negative change in learning patterns, 
compromised balance, impaired coordination, and physical 
strength (Alzheimer’s Society, 2012). It often involves damage 
to specific brain areas linked to motor unity, affecting motor 
coordination and walking patterns. Dementia is a general 
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term for the loss of memory and other cognitive abilities 
serious enough to interfere with daily life and performance. 
It is a precursor for AD, PD, and HD. Dementia can be of 
several types depending on the cause and region of the brain 
affected; other forms include vascular dementia, mixed 
dementia, Parkinson’s disease dementia, dementia with 
Lewy bodies, and Huntington’s disease dementia (Keefover, 
2013).

Subsequently, the widespread neuronal atrophy causes 
motor impairments such as gait instability, decreased 
postural control, and coordination deficiencies in diseases 
like Alzheimer’s-related dementia. These symptoms are 
made worse by the degradation of white matter and cortical 
areas involved in motor planning. For instance, balance and 
fine motor control are affected, which has a major influence 
on day-to-day activities, when the frontal cortex and motor 
pathways are no longer connected (Aggarwal et al., 2006; 
Sayyid et al., 2024).

Furthermore, one of the rare forms of dementia starts 
with the development of abnormal structures called Lewy 
bodies within the brain cells. These cells interrupt the 
chemistry of the brain, which leads to the loss of neurons. 
Common symptoms usually include hallucinations and 
complications in judging distances. A patient memory 
is usually affected less than in the early stages of AD. 
Dementia with Lewy bodies shares significant overlap with 
PD, notably with some similar symptoms, including trouble 
with walking patterns (Albers et al., 2015).

2.3.3. Cognition

Cognition can be described as the mental process of 
perception, which involves features like reasoning, awareness, 
and judgment. Cognition is the activity of understanding, 
the attainment, association, and application of information 
(Brandimonte et al., 2006). During cognition, a repeated 
task that brings about skills learning results in different 
cortical activation patterns. These patterns provide unique 
sequences that do not depend on average activity alterations 
assessed by functional magnetic resonance imaging readings 
(Wiestler & Diedrichsen, 2013).

Furthermore, the relationship between motor skills 
and cognition is now a vital area of study, gaining attention 
day by day (Wang et al., 2023). Research was established to 
study the link between motor skills, cognitive utility, and 
academic performance. The study was conducted on 45 
subjects ranging between 8 and 14 years of age; the link 
was associated between motor coordination, academic 
performance, and cognitive activity. These results depict the 
significance of various physical skills and cognitive tasks. 
The data indicated that visual motor coordination and visual 
selective attention, but not agility, can influence academic 

achievement and cognitive performance. These observations 
pointed out a positive relationship between physical skills 
and several cognitive characteristics (Fernandes et al., 2016).

3. Mechanisms of Motor De-Coordination in 
CNS Disorders
In CNS diseases, motor de-coordination results from 
complicated and multifaceted pathways that disrupt 
the delicate balance of brain regulation. These pathways 
include alterations to brain connectivity, neurotransmitter 
imbalances, synaptic  loss, and neurodegeneration. It is 
crucial to comprehend these underlying issues in order to 
develop targeted approaches.

3.1. Neurodegeneration and Synaptic Loss
Progressive loss of neurons and synaptic connections is 
known as neurodegeneration, and it results in both structural 
and functional abnormalities in motor pathways. Specific 
neuronal populations are dying in diseases including AD 
(Jones et al., 2022), HD (Gil & Rego, 2008), and PD (Zeng 
et al., 2018), which impair motor planning and execution. 
For example, striatal degeneration in HD (Bano et al., 
2011)  inhibits voluntary movement control, while loss of 
dopaminergic neurons in PD affects basal ganglia function. 
Furthermore, synaptic loss impairs brain connection 
between motor areas, exacerbating motor dysfunction 
(Subramanian & Tremblay, 2021).

3.2. Dementia’s Impact on Connectivity and 
Synapses
Motor performance is strongly impacted by synapse loss 
in cortical regions like the prefrontal cortex in dementia, 
especially Alzheimer’s-related dementia. Increased gait 
variability and reduced muscle coordination are correlated 
with decreased connection between the motor cortex and 
cerebellum. Fine motor skills are further compromised 
by pyramidal neuron loss, making tasks like writing and 
handling small items challenging (Andrade-Guerrero et al., 
2024; Scheff et al., 2014).

3.3. Neurotransmitter Imbalances
Dopamine, serotonin, and norepinephrine are among the 
neurotransmitters that are essential for motor coordination 
(Meltzer, 1998). When these substances are out of balance, 
motor units  can’t operate normally. Dopamine deficiency 
causes bradykinesia and rigidity in PD (Ramesh & Arachchige, 
2023), whereas serotonergic dysregulation in depression 
results in motor fatigue and a decrease in physical endurance. 
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Pharmacological treatments to restore neurotransmitter 
balance continue to be a mainstay of care for motor deficits 
in CNS diseases (Teleanu et al., 2022). Furthermore, 
acetylcholine levels, which are critical for synaptic plasticity 
and motor learning, are linked to dementia. Slower reaction 
times and impaired muscle coordination result from reduced 
cholinergic signaling in the basal forebrain, which also affects 
cognitive and motor integration (Haam & Yakel, 2017; 
Sabandal et al., 2022).

3.4. Brain Connectivity Changes
An interconnected network that is essential for motor control 
is formed by the cerebellum, basal ganglia, and cortical 
motor regions (Bostan et al., 2013; Larry et al., 2024). These 
connections are frequently disrupted by CNS diseases, which 
hinders the integration of motor output and sensory input. 
For instance, while basal ganglia impairment in PD hinders 
movement initiation (Obeso et al., 2009), abnormal cerebellar 
activity in anxiety impacts fine motor skills (Martins et 
al., 2024). In addition, hippocampal-cortical circuit 
abnormalities impair motor memory and procedural learning 
in amnesia. Similarly, the default mode network and motor 
areas are less connected in dementia patients, which impacts 

adaptive motor responses and multitasking. Disruptions in 
brain connections that correlate with motor symptoms have 
been identified by advanced imaging techniques, providing 
information about disease processes and possible treatment 
targets (Ferguson et al., 2019).

3.5. Differences across Disorders
Despite the fact that CNS diseases have basic causes such as 
neurodegeneration and neurotransmitter imbalances, each 
ailment displays distinct patterns of motor dysfunction. 
Cortical atrophy and white matter lesions cause motor 
difficulties in AD, whereas abnormalities in the circuits 
of the basal ganglia are a hallmark of PD. HD combines 
peripheral symptoms, including muscular atrophy, with 
striatal degeneration. Developing disease-specific therapies 
that meet the unique problems of each ailment requires an 
understanding of these characteristics.

Hence, the mechanisms underlying motor impairment 
in various CNS disorders are complex and multifaceted. 
Table 1 provides an overview of these mechanisms, detailing 
how neurodegeneration, neurotransmitter imbalances, 
and changes in brain connectivity contribute to motor 
dysfunction in different CNS diseases.

Table 1: Mechanisms by Which CNS Disorders Impair Motor Coordination

Sr. 
No. CNS Disorder Mechanism Impact on Motor Coordination References

1. Anxiety Hyperactivity in the amygdala; 
altered cerebellar activity

Muscle tension, rigidity, and 
impaired fine motor skills (Pluess et al., 2009)

2. Depression
Dysregulation of serotonin 

and norepinephrine; reduced 
neuroplasticity

Fatigue, motor slowness, and 
reduced physical endurance (Mostoufi et al., 2012)

3. Alzheimer’s 
Disease (AD)

Neurofibrillary tangles; amyloid 
plaques; cortical atrophy; white 

matter lesions

Gait disturbances, reduced fine 
motor skills, and impaired balance

(Baumgartner et al., 
1998)

(Boyle et al., 2010)

4. Parkinson’s 
Disease (PD)

Dopaminergic neuron loss in 
substantia nigra; basal ganglia 

dysfunction

Bradykinesia, rigidity, tremors, 
and impaired gait and posture (Jankovic, 2008)

5. Huntington’s 
Disease (HD)

Striatal and cortical degeneration; 
mitochondrial dysfunction

Chorea, dystonia, muscle 
weakness, and reduced 

coordination

(Zielonka et al., 2014)
(Wilson et al., 2017)

6. Amnesia
Disruptions in hippocampal-cortical 

pathways; impaired procedural 
memory

Difficulties in relearning motor 
skills and executing learned 

movements

(Barrett, 2002)
(Laukkanen et al., 2017)

7. Dementia
Synaptic loss; acetylcholine 

depletion; reduced connectivity 
between motor networks

Gait instability, delayed motor 
responses, and impaired 

multitasking
(Keefover, 2013)

8. Cognition
Impaired sensory integration, 

memory processing, and executive 
functions

Delayed motor learning, slower 
reaction times, and reduced 

adaptability
(Wang et al., 2023)
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4. Conclusion
Motor coordination is severely disrupted by diseases 
of the central nervous system, which affects functional 
independence and quality of life. The complex interactions 
between neurodegeneration, neurotransmitter imbalances, 
and altered brain connections in diseases like Parkinson’s, 
Alzheimer’s, Huntington’s, amnesia, and dementia have been 
highlighted in this review. In addition, the integration of 
motor control and sensory input by cognition emphasizes the 
necessity of thorough diagnosis and treatment methods. New 
treatment approaches that show promise for treating cognitive 
and motor deficits include neurostimulation, customized 
medication delivery, and dual-task training. To improve 
patient outcomes, cognitive-motor integration must be 
incorporated into rehabilitation regimens. In order to lessen 
the complex effects of CNS diseases on motor coordination, 
future research should concentrate on improving these 
interventions and investigating cutting-edge strategies. Our 
knowledge of these processes and therapies will grow, opening 
the door to more individualized and efficient patient care.
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