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1. Introduction

Diabetes mellitus (or simply diabetes) is a long-lasting 
disorder of food metabolism characterized by hyperglycemia, 
originating due to defect in insulin secretion, insulin 
function or both leading to tissue and vascular damage 
and resulting in a variety of complications (Bastaki, 2005; 
Cade, 2008; Grewal et al., 2014; Grewal et al., 2016). It 
is currently one of the largest global health emergencies; 
according to the International Diabetes Federation, in 2017 
there were 425 million adults estimated to have diabetes, 
and the number is likely to reach 629 million by 2045 
(IDF). Type 2 diabetes (T2D) affecting more than 90% 
of all the diabetic patients, is a long-term disordered food 
metabolism caused by declined insulin action (Kohei, 2010; 
Olokoba et al., 2012). Although a variety of medicines are 
available for T2D therapeutics, no single drug is useful 
for achieving long-term control of normal blood glucose 
levels in majority of patients. Due to this reason, general 
practitioners prescribe combination of antidiabetic agents 
for T2D therapy and overdose of antidiabetic medicines 
could lead to severe hypoglycemia resulting in brutal toxic 

and side effects. This caused the scientific community to 
search for new antidiabetic drugs (Olokoba et al., 2012; 
Osadebe et al., 2014). Large numbers of plants and parts 
of plants were reported with their antidiabetic properties. 
Various types of plant-derived active principles representing 
several bioactive compounds have established their 
beneficial role for possible use in T2D therapeutics (Patil 
et al., 2011; Ibrahim et al., 2013; Kumar et al., 2012). 
Syzygium cumini (Linn.) is an economically important 
tropical fruit tree belonging to the family Myrtaceae largely 
grown in Indian subcontinent along with some other parts 
of South Asia including Bangladesh, Sri Lanka, Nepal, 
Pakistan, Burma and Indonesia. It is also cultivated in some 
parts of Africa and South America (Swami et al., 2012; 
Srivastava and Chandra, 2013). It is commonly known as 
jamun in India, black plum in Europe, jambolan in Spanish 
spoken countries, and Jambolac in Brazil. It is also known 
as java plum, Indian blackberry, Portuguese plum, Malabar 
plum, purple plum, Jamaica and damson plum (Ayyanar 
and Subash-Babu, 2012; Chagas et al., 2015). Various 
types of secondary metabolites like flavonoids (quercetin, 
rutin, catechin, kaempferol, myricetin, isoquercetin, 
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myricetin deoxyhexoside, myricetin-3-L-arabinoside, 
dihydromyricetin, quercetin-3-D-galactoside, myricetin 
3-O-β-D-glucuronopyranoside, myricetin-4’-methylether 
3-O-α-rhamnopyranoside), phenolic acids (caffeic acid, 
chlorogenic acid, ellagic acid, Ferulic acid, gallic acid, 
3,3’-di-O-methyl ellagic acid,3,3’,4-tri-O-methyl ellagic 
acid), tannins (nilocetin Corilagin, 3,6-HHDP glucose, 
4,6-HHDP glucose, 1-galloyl glucose, 3-galloyl glucose, 
HHDP-galloyl glucose, trigalloyl glucose, Eugenol, and 
oleanolic acid), terpenes (α-pinene, α-cadinol, pinocarvone, 
pinocarveol, α-terpeneol, myrtenol, eucarvone, muurolol, 
myrtenal, cineole, geranyl acetone, β-pinene, β-terpinene, 
betulinic acid, eugenol, citronellol, geraniol, hotrienol, nerol, 
β-phenylethanol, phenylpropanal, β-siterol, and friedelin), 
anthocyanins (Cyanidin, delfinidin and petudinin), 
alkaloids (jambosine), glycosides (jamboline and antimelin), 
minerals (Ca, Mg, Na, K, and Cu), vitamins (thiamine, 
riboflavin, and nicotinic acid) are present in different parts 
of the plant (Veigas et al., 2007; Ramya et al., 2012; Ayyanar 
and Subash-Babu, 2012; Chagas et al., 2015; Bijauliya et 
al., 2017). S. cumini is known to possess wide range of 
pharmacological and therapeutic properties, which have 
been attributed to the presence of bioactive compounds in 
different parts of the plant (Srivastava and Chandra, 2013). 
A variety of various pharmacological activities were shown 
by S. cumini including anti-diabetic (Kumar et al., 2008, 
Tripathi and Kohli, 2014), anti-cancer (Afify et al., 2011), 
anti-oxidant (Nair et al., 2013), antibacterial/antimicrobial 
(Prateek et al., 2015), anti-inflammatory (Muruganandan et 
al., 2001), anti-diarrhoeal (Shamkuwar et al., 2012), anti-
viral (Sood et al., 2012), cardio-protective (Herculano et al., 
2014), anticonvulsant (Kumar et al., 2007), antinociceptive 

(Avila-Pena et al., 2007), gastro-protective (Chaturvedi et 
al., 2009), anti-fertility (Rajasekaran et al., 1998), chemo-
protective (Goyal et al., 2010), anti-allergic (Brito et al., 
2007), inhibition of lipid peroxidation (Veigas et al., 2007), 
anti-histaminic (Mahapatra et al., 1986), anti-pyretic 
(Mahapatra et al., 1986), anti-plaque (Namba et al., 1985), 
anti-hyperlipidemic (Chagas et al., 2015) and hepato-
protective activity (Veigas et al., 2008). Some flavonoids 
and other phenolic derivatives obtained from S. cumini 
including quercetin, myricetin, kaempferol, ferulic acid, 
ellagic acid, catechin and rutin were reported in literature 
to have type 2 antidiabetic potential (Haraguchi et al., 
1998; Ohnishi et al., 2004; Kamalakkannan and Prince, 
2006; Liu et al., 2007; Sharma et al., 2008; Esmaeili et al., 
2009; Wein et al., 2010; Bardy et al., 2013; Chagas et al., 
2015). Currently, medicinal chemistry research is focussed 
on polypharmacological compounds acting on multiple 
targets against complex disorders including diabetes, 
neoplastic diseases, neurodegenerative disorders, and 
certain infectious disorders owing to superior efficacy, better 
safety profile, and ease of administration of multi-target 
drugs. Molecular docking is one of the most widely used 
techniques for the design of multi-target drugs (Espinoza-
Fonseca, 2006; Scotti et al., 2017; Ramsay et al., 2018). In 
the current investigation docking studies were performed 
for some phenolic compounds obtained from S. cumini 
(Figure 1) in the binding site of multiple targets associated 
with T2D (α-glucosidase (AG), dipeptidyl peptidase 4 
(DPP4), glycogen synthase kinase 3 (GSK3), glucokinase 
(GK) and glucagon receptor (GCR)) in order to explore the 
mechanism of antidiabetic action and binding modes using 
molecular docking studies.

Figure 1: Phenolic compounds from Syzygium cumini with potential antidiabetic activity selected for in silico studies. 
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2. Experimental

2.1  In Silico Prediction of Pharmacokinetic 
Parameters

All the selected molecules were analyzed for prediction of 
pharmacokinetic parameters related to absorption, distribution, 
metabolism, and excretion (ADME) by employing FAF-
Drugs4 server; and evaluated using Lipinski’s rule of five for 
drug-likeness (Miteva et al., 2006; Lagorce et al., 2017). 

2.2 Molecular Docking Studies
In silico molecular docking studies were carried out for the 
selected molecules in the binding site of target proteins using 
AutoDock Vina (Trott and Olson, 2010) and AutoDock 
Tools (Morris et al., 2009). The 2-D chemical structures of 
all the compounds were prepared by MarvinSketch (Marvin 
15.9.21, 2015, ChemAxon) and 3-D conformations were 
generated using Frog2 server (Miteva et al., 2010). The 
ligands were converted to “pdbqt” files from “mol” format 
using AutoDock Tools. After assessing a numbers of co-
crystallized structures for target proteins available in the 
protein data bank (https://www.rcsb.org); the best ligand 
bound complexes (PDB entries: 3L4T, 4A5S, 1Q5K, 
3IMX and 5EE7 for AG, DPP4, GSK3, GK and GCR, 

respectively) were selected with complexes having maximum 
resolution and best binding interactions between ligands and 
proteins. An analogous docking method was used for the 
molecular docking of the selected derivatives as described 
in detail in earlier publications using AutoDock Vina and 
the ligand poses with most favorable docking score (binding 
free energy) were selected (Grewal et al., 2017; Charaya et 
al., 2018). The binding interactions of the ligands with the 
target proteins were analysed further for the docked poses of 
the ligands using PyMOL (The PyMOL Molecular Graphics 
System, Version 0.99rc6, Schrödinger, LLC).

3. Results and Discussion

3.1 Pharmacokinetic Parameters
ADME properties including molecular weight (MW), 
partition coefficient (log P), topological polar surface area 
(tPSA), water solubility (log Sw), hydrogen bond acceptors 
(HBA), hydrogen bond donors (HBD), solubility (mg/
mL) and number of rotatable bonds were predicted for all 
the molecules selected for docking studies. Almost all the 
compounds showed good pharmacokinetic parameters and 
drug-like properties as contrived by Lipinski’s rule of five 
(Table 1).

Table 1: Predicted pharmacokinetic parameters (ADME properties) of the compounds selected for docking studies.

Compound MW* log P* tPSA* log Sw
* HBA* HBD* Solubility Rotatable bonds

Quercetin 302.24 1.54 131.03 -2.99 7 5 15.23 1
Myricetin 318.24 1.18 151.26 -2.85 8 6 18.42 1
Kaempferol 286.24 1.90 110.18 -3.13 6 4 12.54 1
Ferulic acid 194.18 1.51 69.59 -1.98 4 2 26.75 3
Catechin 290.27 0.51 110.38 -2.15 6 5 33.86 1
Ellagic acid 302.19 1.10 140.68 -2.83 8 4 17.84 0
Rutin 606.57 0.08 250.64 -3.41 14 10 20.06 6

3.2 Molecular Docking Study
The docking simulations were carried out by energy 
minimization and optimization of selected ligands in the 
binding site of target protein (PDB entries: 3L4T, 4A5S, 
1Q5K, 3IMX and 5EE7 for AG, DPP4, GSK3, GK and 
GCR, respectively). The reference ligands was docked 
into the active site of target proteins; and the docked 
reference ligands produced a similar binding pattern and 
superposition on the binding mode of co-crystallized 
ligand validating accuracy of docking methodology. The 
docking score (binding free energy, ΔG, kcal/mol) of 
the selected compounds with various target proteins are 
presented in Table 2. Amongst the compounds tested in 

silico, myricetin, catechin and rutin showed appreciable 
binding interactions with AG; quercetin, catechin and 
rutin with DPP4; rutin with GCR, kaempferol with GK; 
and ferulic acid and rutin with GSK3 as determined by 
analysing the binding interactions of the selected best 
docked poses and ΔG of the best docked poses. The docking 
studies of these molecules suggested a complimentary fit 
in the binding site of the target proteins. For the rest of the 
molecules, the molecules had a different orientation and 
binding pattern (flipping) in the binding site of the target 
protein possibly due to steric clashes of the substituents. 
Best docked compounds were further analyzed in details 
using PyMOL. 
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Table 2: Docking score of the selected molecules for docking in the binding site of AG, DPP4, GSK3, GK and GCR proteins.

Ligand
Docking score (ΔG, kcal/mol)

AG DPP4 GCR GK GSK3
Quercetin -6.7 -8.2 -6.5 -7.2 -6.9
Myricetin -7.4 -8.1 -6.7 -6.5 -7.2
Kaempferol -6.8 -8.0 -6.7 -8.1 -7.0
Ferulic acid -5.0 -5.5 -5.5 -5.7 -7.3
Catechin -7.2 -8.3 -6.7 -6.8 -6.8
Ellagic acid -6.5 -7.8 -6.3 -7.1 -6.4
Rutin -8.4 -9.3 -7.3 -7.8 -7.5
Reference -7.2 -8.5 -7.3 -9.7 -7.6

Overlay of the docked poses of myricetin, catechin 
and rutin with that of PDB Ligand 3L4T in the binding 
site of AG showed that these molecules had the similar 
binding and orientation pattern in the binding site of 
enzyme as that of co-crystallized ligand (BJ2661 i.e., 
(1R,2S)-1-[(1S)-1,2-dihydroxyethyl]-3-[(2R,3S,4S)-3,4-
dihydroxy-2-(hydroxymethyl)tetrahydrothiophenium-1-
yl]-2-hydroxypropyl sulfate) (Figure 2a). The docked pose 
of myricetin in binding site of AG showed the H-bond 
interactions between carbonyl of chromen-4-one and OH 
of Asp203; 3-OH of chromen-4-one and NH2 of Arg526; 
3-OH of chromen-4-one and carbonyl of Asp542; OH of 
phenyl and carbonyl of Asp 327; and OH of phenyl and 
‘N’ of His600 with H-bond distance of 3.3 Å, 3.3 Å, 3.5 

Å, 2.8 Å, and 3.9 Å respectively (Figure 2b). The docked 
pose of catechin in binding site of AG showed the H-bond 
interactions between hydroxyl of chromene and NH of 
Arg526; hydroxyl of chromene and carbonyl of Asp542; OH 
of phenyl and carbonyl of Asp327; and OH of phenyl and 
‘N’ of His 600 with H-bond distance of 3.2 Å, 3.0 Å, 2.9 
Å, and 4.4 Å respectively (Figure 2c). The docked pose of 
rutin in binding site of AG showed the H-bond interactions 
between hydroxyl of glucose and ‘N’ of Arg526; hydroxyl of 
rhamnose and carbonyl of Asp203; ether ‘O’ and hydroxyl 
of Asp542; hydroxyl of rhamnose and carbonyl of Asp327; 
and OH of glucose and ‘N’ of His600 with H-bond 
distance of 2.8 Å, 3.3 Å, 3.3 Å, 2.7 Å, and 3.3 Å respectively  
(Figure 2d). 

Figure 2: (a) Superimpose of myricetin (red), catechin (green) and rutin (yellow) with PDB ligand of 3L4T (white) in the binding site of AG; 
(b) Docked pose of myricetin; (c) catechin; (d) rutin in the binding site of AG. 
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Overlay of the docked poses of quercetin, catechin and rutin 
with that of PDB Ligand 4A5S in the binding site of DPP4 
showed that these molecules had the similar binding and 
orientation pattern in the binding site of enzyme as that 
of co-crystallized ligand (6-[(3S)-3-Aminopiperidin-1-yl]-
5-benzyl-4-oxo-3-(quinolin-4-ylmethyl)-4,5-dihydro-3h-
pyrrolo[3,2-d]pyrimidine-7-carbonitrile) (Figure 3a). The 
docked pose of quercetin in binding site of DPP4 showed 
the H-bond interactions between ether ‘O’ of chromen-4-
one and NH of Tyr631; and hydroxyl of chromen-4-one 
and carboxyl ‘OH’ of Glu205 with H-bond distance of 

3.8 Å, and 4.5 Å respectively (Figure 3b). The docked pose 
of catechin in binding site of DPP4 showed the H-bond 
interactions between ether ‘O’ of chromen-4-one and NH 
of Tyr631; hydroxyl of chromen-4-one and aromatic OH of 
Tyr662; and hydroxyl of chromen-4-one and carboxyl ‘OH’ 
of Glu205 with H-bond distance of 4.5 Å, 3.1 Å, and 4.6 Å 
respectively (Figure 3c). Docked pose of rutin in binding site 
of DPP4 showed the H-bond interactions between phenyl 
hydroxyl and carbonyl of Glu205; and hydroxyl of phenyl 
ring and aromatic OH of Tyr662 with H-bond distance of 
4.5 Å, 3.1 Å, and 4.6 Å respectively (Figure 3d). 

Figure 3: (a) Superimpose of quercetin (red), catechin (green) and rutin (yellow) with PDB ligand of 4A5S (white) in the binding site of 
DPP4; (b) Docked pose of quercetin; (c) catechin; (d) rutin in the binding site of DPP4.

Figure 4: (a) Superimpose of rutin (red) with PDB ligand of 5EE7 (white); (b) Docked pose of rutin in the binding site of GCR.
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Overlay of the docked pose of rutin with that of PDB 
Ligand 5EE7 in the binding site of GCR showed that it 
had the similar binding and orientation pattern in the 
binding site of enzyme as that of co-crystallized ligand (MK-
0893 i.e., 3-[[4-[(1{S})-1-[3-[3,5-bis(chloranyl)phenyl]-
5-(6-methoxynaphthalen-2-yl)pyrazol-1-yl]ethyl]phenyl]
carbonylamino] propanoic acid) (Figure 4a). The docked 
pose of rutin in binding site of GCR showed the H-bond 
interactions between ether ‘O’ of chromen-4-one and NH 
of Lys349; hydroxyl of phenyl and carbonyl of Ser350; 
hydroxyl of phenyl and amide NH of Asn404; and phenyl 
hydroxyl and amide NH of Lys405 with H-bond distance of 
3.9 Å, 3.1 Å, 2.8 Å, and 3.8 Å respectively (Figure 4b).

Overlay of the docked pose of kaempferol with that of 
PDB Ligand 3IMX in the allosteric site of GK showed that it 
had the similar binding and orientation pattern in the allosteric 
binding site of GK enzyme as that of co-crystallized activator 
((2R)-3-cyclopentyl-N-(5-methoxy[1,3]thiazolo[5,4-b]
pyridin-2-yl)-2-{4-[(4-methylpiperazin-1-yl)sulfonyl]phenyl}
propanamide) (Figure 5a). Kaempferol was found to bind to 
an allosteric pocket of GK protein, which is about 20Å remote 
from the glucose binding site. The docked pose of kaempferol 
showed the H-bond interaction between hydroxyl and 
carbonyl group of chromene-4-one with backbone carbonyl 
and amide NH of Arg63 on GK protein with H-bond distance 
of 4.9 Å and 4.7 Å respectively (Figure 5b).

Figure 5: (a) Superimpose of kaempferol (red) with PDB ligand of 3IMX (white); (b) Docked pose of kaempferol in the allosteric site of GK.

Figure 6: (a) Superimpose of rutin (red) with PDB ligand of 1Q5K (white); (b) Docked pose of rutin in the binding site of GSK3.

Overlay of the docked pose of rutin with that of 
PDB Ligand 1Q5K in the binding site of GSK3 showed 
that it had the similar binding and orientation pattern in 
the binding site of GSK3 enzyme as that of co-crystallized 
ligand (N-(4-methoxybenzyl)-N’-(5-nitro-1,3-thiazol-2-yl)
urea) (Figure 6a). The docked pose of rutin in binding site 
of GSK3 showed the H-bond interactions between ‘OH’ of 
glucose and carbonyl of Pro136; ‘OH’ of oxychromen-4-
one and carbonyl of Val135; and carbonyl of oxychromen-
4-one and amide ‘NH’ of Val135 with H-bond distance of 
2.7 Å, 3.5 Å, and 3.8 Å respectively (Figure 6b).

4. Conclusion
Molecular docking studies using AutoDock vina and 
AutoDock Tools was performed to explore the binding 
mechanism of the selected natural phenolic compounds 
from S. cumini with multiple targets associated with T2D. In 
current in silico docking study, results clearly demonstrated 
that amongst the compounds tested in silico, rutin showed 
appreciable binding with multiple targets of T2D including 
α-glucosidase, dipeptidyl peptidase 4, glycogen synthase 
kinase 3, and glucagon receptor. Catechin was found 
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to inhibit both α-glucosidase, and dipeptidyl peptidase 
4. Myricetin was found to inhibit AG and quercetin was 
found to inhibit DPP4. Kaempferol was found to activate 
allosterically GK protein. In silico study is actually an added 
advantage to screen the type 2 antidiabetic agents and 
natural phenolic compounds may serve as useful leads for 
the synthesis of clinically useful and safe type 2 antidiabetic 
agents. However, structural modifications and further 
studies on these natural phenolic compounds are required to 
develop safe and potent natural type 2 antidiabetic agents. 
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