Application of Microcrystalline Cellulose Powders Obtained from Gossypiumherbaceum As Dry Binder in the Formulation of Diazepam Tablets

Abstract

Background: Microcrystalline cellulose (MCC) is a popular dry binder in tablet formulation. Differences in its processing methods can significantly affect its tableting properties. Aim Assessment of the tableting and in-vitro release properties of diazepam tablets formulated with Gossypiumherbaceum (GH) derived MCC that was dried by two different methods.

Methods: G.herbaceum bolls were de-lignified in sodium hydroxide solutions to obtain α- cellulose which was hydrolyzed with 2.0 N hydrochloric acid to obtain MCC. The neutralized damp MCC was separated into two portions. One portion was fluid bed dried (MCC-GossF) while the other portion was lyophilized (MCC-GossL). Diazepam tablets were prepared with 20, 30 and 40%w/w of MCC-GossF and MCC-GossL..Avicel PH 102 (AVH-102) served as comparing standard. The formulations were evaluated using standard methods.

Results: The powders flowed well and the tablets met with British Pharmacopoiea specifications. Diazepam tablets containing MCC-GossL (DGL) were stronger than those of MCC-GossF (DCF) (p<0.05). The disintegration times were < 2 min and friability ≤ 1%. The strength of tablets containing AVH-102 (DAV) compared well with those of DGL tablets. More than 80% of diazepam was released from the tablets.

Conclusion: The GH MCCs served as good dry binders in the formulation of diazepam tablets.

  • Page Number : 75-86
  • Keywords
    Tableting, in-vitro release, diazepam, Gossypiumherbaceum, microcrystalline cellulose.
  • DOI Number
    10.15415/jptrm.2022.101007
  • Authors
    • Nkemakolam Nwachukwu
    • SabinusIfeanyi Ofoefule

References

  • Achor, M., Oyeniyi Y.J., &Yahaya, A. (2014). Extraction and characterization of microcrystalline obtained from the back of the fruit of La,gerianasiceraria (water guord), Journal of Applied Pharm. Sci.,4 (1), 57 – 60. https://doi.org/10.7324/JAPS.2014.40109
  • Anand, S.M., &Chawla, J.S. (1981). Microcrystalline cellulose from hosiery waste, Research and Industry, 26, 227 – 235.
  • Ansel, C.H., Popovich, G.N., & Allen, V.L. (2005). Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems. New York: Lippincott Williams and Wilkins; p. 189.
  • Armstrong, N.A. (1990). “Tableting” In :Aulton M.E. (ed), Pharmaceutics: “The  Science of Dosage Form Design”, ELBS, Churchill Livingstone, London, p.663.
  • Azubuike, C.P., Rodríguez,  H., Okhamafe,  A.O., & Rogers, R.D. (2012).  Physicochemical properties of maize cob cellulose powders reconstituted  from ionic liquid solution. Cellulose, 19, 425–433. https://doi.org/10.1007/s10570-011-9631-y
  • Barauh, P.P., Bhattacharya, G.C., &Chaliha, B.P. (2000). Microcrystalline from cotton, Indian Pulp and Paper, pp. 971 – 976.
  • British National Formulary (BNF 73) (2007). Diazepam, p.36. Available online at www.bnf.org
  • British Pharmacopoiea. (2012). Vol.II, Her Majesty Stationary Office, University Press, Cambridge, A326 -  327.
  • Chaerunisaa, A.Y., Sriwidodo, S. &Abdassah, M. (2017) Microcrystalline Cellulose as Pharmaceutical Excipient, Intechopen. http://dx.doi.org/10.5772/intechopen.88092
  • Chauhan, Y.P., Sapkal, R.S., Sapkal, V.S., &Zamre, G.S. (2009). Microcrystalline cellulose from cotton rags (waste from garment and hosiery industries). International Journal of Chemical Sciences, 7(2), 681-688.
  • Chuayjuljit, S., Su-uthai, S., &Charuchinda, S. (2010). Poly (vinyl chloride) film filled with microcrystalline cellulose prepared from cotton fabric waste: Properties and biodegradability study. Waste Management & Research, 28(2), 109-117. https://doi.org/10.1177/0734242X09339324
  • Ejikeme, P.M. (2008). Investigation of the physicochemical properties of microcrystalline cellulose from agricultural wastes I: Orange mesocarp. Cellulose, 15(1),141-147. https://doi.org/10.1007/s10570-007-9147-7
  • Emeje, M., Ekpo, M., Olayemi, O., Isimi, C. &Buraghoin, (2020).A. Physicochemical and drug release properties of microcrystalline cellulose derived from Musa balbisiana. Polímeros: Ciência e Tecnologia, 30(1), e2020010. https://doi.org/10.1590/0104-1428.07418
  • Gaonkar, S.M., &Kulkarni, P.R. (1987). Improved method for the preparation of microcrystalline cellulose from water hyacinth. Textile Dyer and Printer, 20(26),19-22.
  • Gibson, L.J. (2012).The hierarchical structure and mechanics of plant materials. Journal of the Royal Society Interface, 9, 2749-2766. https://doi.org/10.1098/rsif.2012.0341
  • Gohel, M. (2014). Manufacturing Methods of Tablets.Available at www.pharmainfo. Net. Accessed 7th Jan. 2015.
  • Haafiz, M.K.M., Eichhorn, S.J., Hassan, A., &Jawaid, M. (2013). Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohydrate polymers; 93(2), 628-634. https://doi.org/10.1016/j.carbpol.2013.01.035
  • Hindi, S.S.Z., &Abohassan, R.A. (2016). Cellulosic microfibril and its embedding matrix within plant cell wall.International Journal of Innovative Research in Science, Engineering and Technology.5(3),2727-2734.
  • Ilindra, A., &Dhake, J.D. (2008). Microcrystalline cellulose from bagasse and rice straw.Indian Journal of Chemical Technology, 15(5), 497-499.
  • Klemm, D., Heublein, B., Fink, H.P.C., & Bohn, A. (2005). Cellulose: Fascinating biopolymer and sustainable raw material. AnewandieChemie–International edition, 44, 3358 – 3393. https://doi.org/10.1002/anie.200460587
  • Korsmeyer, R.W.  &Peppas, N.A. (1981). Effect of Morphology of Hydrophilic Polymer Matrices on the Diffussion and Release of water woluble drugs, J. Member. Sci. 9, 211 - 217. https://doi.org/10.1016/S0376-7388(00)80265-3
  • Kunnath, K., Huang, Z., Chen, L., Zheng, K., &Davé, R. (2018). Improved properties of fine active  pharmaceutical ingredient powder blends and tablets at high drug loading via dry particle coating. Int J Pharm., 543, 288-299. https://doi.org/10.1016/j.ijpharm.2018.04.002
  • Meeus, L. (2011). Direct Compression versus Granulation, Pharmaceutical Technology Europe , 23 (3), 1-2.
  • Mistry, R., Dalal, C., &Soni, T. (2017). Determination of Angle of Repose of Pharmaceutical Materials Based On Image Processing Using Labview.International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 6(3), 1125-1131.
  • Mollan, M.J. &Çelik, M. (1995). The Effects of Humidity and Storage Time on the Behavior of Maltodextins for Direct Compression, Int. J. Pharm,114(1), 23–32. https://doi.org/10.1016/0378-5173(94)00209-N
  • Mothilal, M., Srikanth, K., Sivagirish, B.G., Gnanendra, K., Manimaran, V., & Damodharan, N. (2012). Formulation and evaluation of Rizatriptan Benzoate Orally Disintegrating Tablets, Int. J. Drug Dev. & Res., 4(2), 117- 123.
  • Nwachukwu, N. &Ofoefule, S.I. (2017). Effect of drying methods on the powder and tableting properties of microcrystalline cellulose obtained from Cocosnucifera. Journal of Pharmaceutical  Research International, 20 (2), 1-15.
  • Nwachukwu, N.& Ugoeze, K.C. (2018). Studies on Microcrystalline cellulose obtained from Saccharumofficinarum 1: Processing and Physicochemical properties. European Journal of Biomedical and Pharmaceutical Sciences, 5 (2), 42-48. https://doi.org/10.22270/jddt.v8i2.1666
  • Nwachukwu, N., &Ofoefule, S.I.  (2020). Effect of drying methods on the powder and compaction properties of microcrystalline cellulose derived from Gossypiumherbaceum, Braz. J.  Pharm. Sci., 56, 1-17. https://doi.org/10.1590/s2175-97902020000118060
  • Nwachukwu, N., Ugoeze, K.C., Okoye, A.C., &Chinaka, C.N. (2018). Application of microcrystalline cellulose obtained from Saccharumofficinarumas dry binder in ciprofloxacin tablet formulation. Journal of Pharmacy and   Bioresources, 15(1), 48-55. https://doi.org/10.4314/jpb.v15i1.6
  • Nwajiobi, C. C, Otaigbe, J. O. E., &Oriji, O. (2019). Isolation and characterization of microcrystalline cellulose from papaya stem. Der PharmaChemica, 11(3), 19-26.
  • Ofoefule, S.I., Nwachukwu, N., &Umeh, O.N. (2018). Selected abstracts from Excipient Fest 2017, Drug Development and Industrial Pharmacy, 44(5): 868- 871. https://doi.org/10.1080/03639045.2017.1410331
  • Ohwoavworhua, F.O., &Adelakun, T.A. (2005). Phosphoric acid-mediated depolymerization and decrystallization of a-cellulose obtained from corn cob: preparation of low crystallinity cellulose and some physicochemical properties. Tropical Journal of Pharmaceutical Research, 4(2), 509-516. https://doi.org/10.4314/tjpr.v4i2.14627
  • Ohwoavworhua, F.O., &Adelakun, T.A. (2005). Some Physical Characteristics of microcrystalline cellulose obtained from raw cotton of Cochlospermumplanchonii, Trop. J. Pharm. Res., 4(2), 501 – 507. https://doi.org/10.4314/tjpr.v4i2.14626
  • Ohwoavworrhua, F.O., Adekunle, T.A., & Okhmafe, O.A. (2009). Processing pharmaceutical grade microcrystalline cellulose from groundnut husk: Extraction methods and characterization, Int. J.Green Pharm., 3(2), 97–104. https://doi.org/10.4103/0973-8258.54895
  • Owolabia, A., Haafiza, M., Hossain, M., Hussin, H.,  &Fazita, N. (2017). Influence of alkaline hydrogen peroxide pre-hydrolysis on the isolation of microcrystalline cellulose from oil palm fronds. International Journal of Biological Macromolecules; 95, 1228-1234. https://doi.org/10.1016/j.ijbiomac.2016.11.016
  • Peppas, N.A.(1985). Analysis of Fickian and non Fickian drug release from polymers, Pharm. ActaHelv.60, 110- 111.
  • Rashid, M., Gafur, M.A., Sharafat, M.K., Minami, H., Miah, M.A.J., & Ahmad, H. (2017). Biocompatible microcrystalline cellulose particles from cotton wool and magnetization via a simple in situ co-precipitation method. Carbohydrate polymers, 170, 72-79. https://doi.org/10.1016/j.carbpol.2017.04.059
  • Singh, P.K., Shuaib, M., Iqubal, A., & Singh, M. (2014). Recent Advances in Direct Compression Technique for Pharmaceutical Technology Formulation, IJPRD, 6(1), 49-57.
  • Staniforth JN, “Powder Flow” In:  Aulton, M.E., Pharmaceutics: The Science of Dosage   Form Design, ELBS, Churchill Livingstone, London: 1988, p. 105.
  • Suryadi, H., Sutriyo, Sari, R.H., &Rosikhoh, D. (2017). Preparation of microcrystalline cellulose from water hyacinth powder by enzymatic hydrolysis using cellulose of local isolate.J. Young Pharm. 9(1), 19-23. https://doi.org/10.5530/jyp.2017.1s.6
  • Suvachittanont, S., &Ratanapan, P. (2013). Optimization of micro crystalline cellulose production from corn cob for pharmaceutical industry investment.Journal of Chemistry and Chemical Engineering, 7, 1136-1141.
  • Sweetman, S.C. (2011). Martindale: The Extra Pharmacopoiea, 37th ed., The Pharmaceutical Press London, pp.612-615.
  • Uesu, N.Y., Pineda, E.A., &Hechenleitner, A.A. (2000). Microcrystalline cellulose from soybean husk: Effects of solvent treatments on its properties as acetylsalicylic acid carrier. International Journal of Pharmaceutics, 206, 85-96. https://doi.org/10.1016/S0378-5173(00)00532-9
  • Ugoeze, K.C. & Nwachukwu, N.  (2018). Comparative physicochemical evaluation of microcrystalline cellulose obtained from sugar cane peel and bagasse. Journal of Pharmacy  and Bioresources, 15(1), 37-47. https://doi.org/10.4314/jpb.v15i1.5
  • United States Pharmacopoiea, 32. (2009). The United States Pharmacopioeal Convention, Rockville, Vol.II, pp.2113- 2116.
  • Yalli, Y., Kostka-Rokosz, M., Dvorkin, L., &JuliaWhelan, M.S. (2014). GossypiumHirsutum/GossypiumHerbaceum.Boston Healing Landscape Project.Boston University School of Medicine.Available at www.Gossypiumherbaceum, Wikipedia, Retrieved 20 February 2020.

  • Published Date : 2022-05-07