Therapeutic Implication of Herbal Phytoconstituents in Alzheimer’s Disease

Abstract

Introduction: Herbal plants have been widely used in traditional medicines for improving cognitive decline and age-related loss of memory since ancient times. Medicinal plants, it is claimed, contain various active components, and they have a widely used synthetic medication option for treating cognitive and associated issues. Herbal medicines have aided in advancing medicine, and several innovative pharmaceuticals have already developed. For example, much research has backed the use of phytoconstituents in herbal medicines to treat Alzheimer’s disease (AD). Progressive memory loss, linguistic difficulties, melancholy, anxiety, mood swings, and psychosis are some of these symptoms.

Objective: A systemic literature review of Bentham, Scopus, PubMed, Medline, and EMBASE (Elsevier) database was carried out to understand the study till March 2021. Conclusion: Although neurofibrillary tangle and cholinergic dysfunction, -amyloid plaquesdevelopment are critical features of AD, it is also linked to oxidative damage, disruption of other neurotransmitters, high levels of AGEs, neuroinflammation, hereditary and environmental variables. On the one hand, because of this complex etiology, responses to routinely used medications like memantine, donepezil, galantamine, and rivastigmine are unpredictable and frequently poor. On the other hand, their nonspecific anti-inflammatory and antioxidant effect and particular cholinesterase inhibitory activity support the use of herbal medications. Herbal drugs are also gaining popularity as a result of their supposed efficacy, safety, and accessibility.

  • Page Number : 67-74
  • Keywords
    Alzheimer’s disease, Neuroinflammation, Medicinal plants, Herbal medicines, Inflammation
  • DOI Number
    10.15415/jptrm.2021.92007
  • Authors
    • Vivek Rihal
    • Heena Khan
    • Amarjot Kaur Grewal
    • Thakur Gurjeet Singh

References

  • Abdel-Aziz, H., Windeck, T., Ploch, M., &Verspohl, E. J. (2006). Mode of action of gingerols and shogaols on 5-HT3 receptors: binding studies, cation uptake by the receptor channel and contraction of isolated guinea-pig ileum. European Journal of Pharmacology530(1-2), 136-143.
  • Akinyemi, A. J., Oboh, G., Oyeleye, S. I., &Ogunsuyi, O. (2017). Anti-amnestic effect of curcumin in combination with donepezil, an anticholinesterase drug: involvement of cholinergic system. Neurotoxicity Research31(4), 560-569.
  • Ardura-Fabregat, A., Boddeke, E. W. G. M., Boza-Serrano, A., Brioschi, S., Castro-Gomez, S., Ceyzériat, K., ... & Yang, Y. (2017). Targeting neuroinflammation to treat Alzheimer's disease. CNS Drugs31(12), 1057-1082.
  • Bihaqi, S. W., Sharma, M., Singh, A. P., & Tiwari, M. (2009). Neuroprotective role of Convolvulus pluricaulis on aluminium induced neurotoxicity in rat brain. Journal of Ethnopharmacology124(3), 409-415.
  • Chagas, C. E., Borges, M. C., Martini, L. A., &Rogero, M. M. (2012). Focus on vitamin D, Inflammation and type 2 diabetes. Nutrients4(1), 52–67.
  • Cho, I. H. (2012). Effects of Panax ginseng in neurodegenerative diseases. Journal of Ginseng Research36(4), 342.
  • Friedman, L. G., Qureshi, Y. H., & Yu, W. H. (2015). Promoting autophagic clearance: viable therapeutic targets in Alzheimer's disease. Neurotherapeutics12(1), 94-108.
  • Ghosh, A., Chen, F., Wu, F., Tang, S. S., Hu, M., Long, Y., & Hong, H. (2017). CysLT1R downregulation reverses intracerebroventricular streptozotocin-induced memory impairment via modulation of neuroinflammation in mice. Progress in Neuro-Psychopharmacology and Biological Psychiatry73, 19-30.
  • Gonzales, G. F., Córdova, A., Vega, K., Chung, A., Villena, A., Góñez, C., & Castillo, S. (2002). Effect of Lepidiummeyenii (MACA) on sexual desire and its absent relationship with serum testosterone levels in adult healthy men. Andrologia34(6), 367-372.
  • Gonzales, G. F., Miranda, S., Nieto, J., Fernández, G., Yucra, S., Rubio, J., ... &Gasco, M. (2005). Red maca (Lepidiummeyenii) reduced prostate size in rats. Reproductive Biology and Endocrinology3(1), 1-16.
  • Henrotin, Y., Clutterbuck, A. L., Allaway, D., Lodwig, E. M., Harris, P., Mathy-Hartert, M., ... &Mobasheri, A. (2010). Biological actions of curcumin on articular chondrocytes. Osteoarthritis and Cartilage18(2), 141-149.
  • Herrup, K. (2015). The case for rejecting the amyloid cascade hypothesis. Nature Neuroscience18(6), 794-799.
  • Izzo, A. A., & Ernst, E. (2001). Interactions between herbal medicines and prescribed drugs. Drugs61(15), 2163-2175.
  • Jayaprakasam, B., Padmanabhan, K., & Nair, M. G. (2010). Withanamides in Withania somnifera fruit protect PC-12 cells from β-amyloid responsible for Alzheimer's disease. Phytotherapy Research24(6), 859-863.
  • Jevtic, S., Sengar, A. S., Salter, M. W., & McLaurin, J. (2017). The role of the immune system in Alzheimer disease: etiology and treatment. Ageing Research Reviews40, 84-94.
  • Katerinopoulos, H. E., Pagona, G., Afratis, A., Stratigakis, N., & Roditakis, N. (2005). Composition and insect attracting activity of the essential oil of Rosmarinus officinalis. Journal of Chemical Ecology31(1), 111-122.
  • Kennedy, D. A., & Seely, D. (2010). Clinically based evidence of drug–herb interactions: a systematic review. Expert Opinion on Drug Safety9(1), 79-124.
  • Kim, D. I., Lee, S. H., Choi, J. H., Lillehoj, H. S., Yu, M. H., & Lee, G. S. (2008). The butanol fraction of Ecliptaprostrata (Linn) effectively reduces serum lipid levels and improves antioxidant activities in CD rats. Nutrition Research28(8), 550-554.
  • Kinney, J. W., Bemiller, S. M., Murtishaw, A. S., Leisgang, A. M., Salazar, A. M., & Lamb, B. T. (2018). Inflammation as a central mechanism in Alzheimer's disease. Alzheimer's & Dementia: Translational Research & Clinical Interventions4, 575-590.
  • Le Bars, P. L., Katz, M. M., Berman, N., Itil, T. M., Freedman, A. M., &Schatzberg, A. F. (1997). A placebo-controlled, double-blind, randomized trial of an extract of Ginkgo biloba for dementia. Jama278(16), 1327-1332.
  • Lekha, G., Kumar, B. P., Rao, S. N., Arockiasamy, I., & Mohan, K. (2010). Cognitive enhancement and Neuroprotective effect of Celastrus paniculatus Willd. seed oil (Jyothismati oil) on male Wistar rats. Journal of Pharmaceutical Science and Technology2(2), 130-138.
  • Matsuda, H., Murakami, T., Kishi, A., & Yoshikawa, M. (2001). Structures of withanosides I, II, III, IV, V, VI, and VII, new withanolide glycosides, from the roots of Indian Withania somnifera DUNAL. and inhibitory activity for tachyphylaxis to clonidine in isolated guinea-pig ileum. Bioorganic & Medicinal Chemistry9(6), 1499-1507.
  • Mehla, J., Pahuja, M., Dethe, S. M., Agarwal, A., & Gupta, Y. K. (2012). Amelioration of intracerebroventricular streptozotocin induced cognitive impairment by Evolvulusalsinoides in rats: in vitro and in vivo evidence. Neurochemistry International61(7), 1052-1064.
  • Mizwicki, M. T., Liu, G., Fiala, M., Magpantay, L., Sayre, J., Siani, A., ... &Teplow, D. B. (2013). 1α, 25-dihydroxyvitamin D 3 and resolvin D1 retune the balance between amyloid-β phagocytosis and Inflammation in Alzheimer's disease patients. Journal of Alzheimer's Disease34(1), 155-170.
  • Nievergelt, A., Huonker, P., Schoop, R., Altmann, K. H., &Gertsch, J. (2010). Identification of serotonin 5-HT1A receptor partial agonists in ginger. Bioorganic & Medicinal Chemistry18(9), 3345-3351.
  • Rafii, M. S., Walsh, S., Little, J. T., Behan, K., Reynolds, B., Ward, C., ... &Aisen, P. S. (2011). A phase II trial of huperzine A in mild to moderate Alzheimer disease. Neurology76(16), 1389-1394.
  • Rai, K. S., Murthy, K. D., Karanth, K. S., Nalini, K., Rao, M. S., & Srinivasan, K. K. (2002). Clitoriaternatea root extract enhances acetylcholine content in rat hippocampus. Fitoterapia73(7-8), 685-689.
  • Rao, S. B., Chetana, M., & Devi, P. U. (2005). Centella asiatica treatment during postnatal period enhances learning and memory in mice. Physiology & Behavior86(4), 449-457.
  • Rapoport, S. I., & Nelson, P. T. (2011). Biomarkers and evolution in Alzheimer disease. Progress in Neurobiology95(4), 510-513.
  • Rastogi, S., Pandey, M. M., & Rawat, A. K. S. (2011). An ethnomedicinal, phytochemical and pharmacological profile of Desmodiumgangeticum (L.) DC. and Desmodiumadscendens (Sw.) DC. Journal of Ethnopharmacology136(2), 283-296.
  • Rhode, J., Fogoros, S., Zick, S., Wahl, H., Griffith, K. A., Huang, J., & Liu, J. R. (2007). Ginger inhibits cell growth and modulates angiogenic factors in ovarian cancer cells. BMC complementary and Alternative Medicine7(1), 1-9.
  • Safarinejad, M. R. (2005). Urtica dioica for treatment of benign prostatic hyperplasia: a prospective, randomized, double-blind, placebo-controlled, crossover study. Journal of Herbal Pharmacotherapy5(4), 1-11.
  • Sanabria-Castro, A., Alvarado-Echeverría, I., & Monge-Bonilla, C. (2017). Molecular pathogenesis of Alzheimer's disease: an update. Annals of Neurosciences24(1), 46-54.
  • Sancheti, S., Um, B. H., & Seo, S. Y. (2010). 1, 2, 3, 4, 6-penta-O-galloyl-β-D-glucose: A cholinesterase inhibitor from Terminalia chebula. South African Journal of Botany76(2), 285-288.
  • Singh, A. K., Mishra, G., Maurya, A., Awasthi, R., Kumari, K., Thakur, A., ... & Singh, S. K. (2019). Role of TREM2 in Alzheimer's Disease and its Consequences on β-Amyloid, Tau and Neurofibrillary Tangles. Current Alzheimer Research16(13), 1216-1229.
  • Spiridonov, N. A., Arkhipov, V. V., Foigel, A. G., Shipulina, L. D., &Fomkina, M. G. (2003). Protonophoric and uncoupling activity of royleanones from Salvia officinalis and euvimals from Eucalyptus viminalis. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives17(10), 1228-1230.
  • Sutalangka, C., Wattanathorn, J., Muchimapura, S., &Thukham-mee, W. (2013). Moringa oleifera mitigates memory impairment and neurodegeneration in animal model of age-related dementia. Oxidative Medicine And Cellular Longevity2013.
  • Tawab, M. A., Bahr, U., Karas, M., Wurglics, M., & Schubert-Zsilavecz, M. (2003). Degradation of ginsenosides in humans after oral administration. Drug Metabolism And Disposition31(8), 1065-1071.
  • Wang, B. S., Wang, H., Wei, Z. H., Song, Y. Y., Zhang, L., & Chen, H. Z. (2009). Efficacy and safety of natural acetylcholinesterase inhibitor huperzine A in the treatment of Alzheimer's disease: an updated meta-analysis. Journal of Neural Transmission116(4), 457-465.
  • Wilson, V., &Maulik, S. K. (2018). Herb-drug interactions in neurological disorders: a critical appraisal. Current drug metabolism19(5), 443-453.
  • Yaari, R., & Corey-Bloom, J. (2007). Alzheimer's disease. Seminars in Neurology27(1), 32–41.
  • Yan, J., Hu, J., Liu, A., He, L., Li, X., & Wei, H. (2017). Design, synthesis, and evaluation of multitarget-directed ligands against Alzheimer's disease based on the fusion of donepezil and curcumin. Bioorganic & medicinal chemistry25(12), 2946-2955.
  • Zhong, K. L., Chen, F., Hong, H., Ke, X., Lv, Y. G., Tang, S. S., & Zhu, Y. B. (2018). New views and possibilities of antidiabetic drugs in treating and/or preventing mild cognitive impairment and Alzheimer's Disease. Metabolic brain disease33(4), 1009-1018.
  • Zhou, S. F., Zhou, Z. W., Li, C. G., Chen, X., Yu, X., Xue, C. C., & Herington, A. (2007). Identification of drugs that interact with herbs in drug development. Drug Discovery Today12(15-16), 664-673.

  • Published Date : 2021-11-08