Regulatory and Pathological Roles of CaSR and TRPC in Podocytes
Abstract
Background: Podocytes, or glomerular visceral epithelial cells, are highly special-ised epithelial cells that cover the glomerular basement membrane’s outer surface. Recent research suggests that podocytes play a signifi-cant role in the physiology and pathology of the glomerulus. The calcium-sensing receptor (CaSR) has a variety of roles in maintaining systemic calcium homeostasis, and it is expressed by a variety of cell types, each with its own set of regulatory activities. CaSR activation in podocytes provides prosurvival effects and protects the cell against puromycin aminonucleoside damage, according to new research by Oh and associates.
Purpose: Given that CaSR activation has mostly context-dependent cellular implications, further research is needed to determine its specific involvement in podocyte physiology and pathology. Glomerular kidney disease is a significant healthcare burden, and it is thought to be a collection of illnesses for which there is no precise and effective treatment.
Conclusion: Excellent scientific and genetic research have identified processes that go wrong in podocytes, the glomerular filter’s regulating cells. Now the challenge is how to des-ignate targets for new, better medicines.
- Page Number : 7-15
- Keywords
CaSR, TRPC, Calcium, Podo-cytes, PAN, GBM - DOI Number
10.15415/jptrm.2021.91002 -
Authors
- Ashish
- Gaaminepreet Singh
- Thakur Gurjeet Singh
References
- Abramowitz, J., & Birnbaumer, L. (2009). Physiology and pathophysiology of canonical transient receptor potential channels. The FASEB Journal, 23(2), 297-328.https://doi.org/10.1096/fj.08-119495
- Adler, S. (1992). Characterization of glomerular epithelial cell matrix receptors. The American journal of pathology, 141(3), 571.
- Anderson, M., Kim, E. Y., Hagmann, H., Benzing, T., & Dryer, S. E. (2013). Opposing effects of podocin on the gating of podocyte TRPC6 channels evoked by membrane stretch or diacylglycerol. American Journal of Physiology-Cell Physiology, 305(3), C276-C289.https://doi.org/10.1152/ajpcell.00095.2013
- Chen, S., He, F. F., Wang, H., Fang, Z., Shao, N., Tian, X. J., ... & Zhang, C. (2011). Calcium entry via TRPC6 mediates albumin overload-induced endoplasmic reticulum stress and apoptosis in podocytes. Cell calcium, 50(6), 523-529.https://doi.org/10.1016/j.ceca.2011.08.008
- Clapham, D. E. (2003). TRP channels as cellular sensors. Nature, 426(6966), 517-524.https://doi.org/10.1038/nature02196
- Dattilo, M., Penington, N. J., & Williams, K. (2008). Inhibition of TRPC5 channels by intracellular ATP. Molecular pharmacology, 73(1), 42-49.https://doi.org/10.1124/mol.107.040899
- Drenckhahn, D., & Franke, R. P. (1988). Ultrastructural organization of contractile and cytoskeletal proteins in glomerular podocytes of chicken, rat, and man. Laboratory investigation; a journal of technical methods and pathology, 59(5), 673-682.
- Drumond, M. C., Kristal, B., Myers, B. D., & Deen, W. M. (1994). Structural basis for reduced glomerular filtration capacity in nephrotic humans. The Journal of clinical investigation, 94(3), 1187-1195. doi: 10.1172/JCI117435.
- Dryer, S. E., & Reiser, J. (2010). TRPC6 channels and their binding partners in podocytes: role in glomerular filtration and pathophysiology. American Journal of Physiology-Renal Physiology, 299(4), F689-F701.https://doi.org/10.1152/ajprenal.00298.2010
- Eckel, J., Lavin, P. J., Finch, E. A., Mukerji, N., Burch, J., & Gbadegesin, R. (2013). Wu G, Bowling B, Byrd A, Hall G, Sparks M, Zhang ZS, Homstad A, Barisoni L, Birbaumer L, Rosenberg P, Winn MP: TRPC6 enhances angiotensin II-induced albuminuria. J Am Soc Nephrol 22: 526–535, 2011. On page 526 the author names. J Am Soc Nephrol, 24(160).
- Eid, S. R., & Cortright, D. N. (2009). Transient receptor potential channels on sensory nerves. Sensory Nerves, 261-281.https://doi.org/10.1007/978-3-540-79090-7_8
- Farquhar, M. G. (2006). The glomerular basement membrane: not gone, just forgotten. The Journal of clinical investigation, 116(8), 2090-2093. https://doi.org/10.1172/JCI29488
- Faul, C., Asanuma, K., Yanagida-Asanuma, E., Kim, K., & Mundel, P. (2007). Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton. Trends in cell biology, 17(9), 428-437. https://doi.org/10.1016/j.tcb.2007.06.006
- Fukasawa, H., Bornheimer, S., Kudlicka, K., & Farquhar, M. G. (2009). Slit diaphragms contain tight junction proteins. Journal of the American Society of Nephrology, 20(7), 1491-1503. https://doi.org/10.1681/ASN.2008101117
- Gelberg, H., Healy, L., Whiteley, H., Miller, L. A., & Vimr, E. (1996). In vivo enzymatic removal of alpha 2--> 6-linked sialic acid from the glomerular filtration barrier results in podocyte charge alteration and glomerular injury. Laboratory investigation; a journal of technical methods and pathology, 74(5), 907-920.
- George, B., & Holzman, L. B. (2012, July). Signaling from the podocyte intercellular junction to the actin cytoskeleton. In Seminars in nephrology (Vol. 32, No. 4, pp. 307-318). WB Saunders. https://doi.org/10.1016/j.semnephrol.2012.06.002
- Giardino, L., Armelloni, S., Corbelli, A., Mattinzoli, D., Zennaro, C., Guerrot, D., ... & Rastaldi, M. P. (2009). Podocyte glutamatergic signaling contributes to the function of the glomerular filtration barrier. Journal of the American Society of Nephrology, 20(9), 1929-1940. https://doi.org/10.1681/ASN.2008121286
- Gloy, J., Henger, A., Fischer, K. G., Nitschke, R., Mundel, P., Bleich, M., ... & Pavenstädt, H. (1997). Angiotensin II depolarizes podocytes in the intact glomerulus of the Rat. The Journal of clinical investigation, 99(11), 2772-2781.https://doi.org/10.1172/JCI119467
- Goel, M., Sinkins, W. G., Zuo, C. D., Estacion, M., & Schilling, W. P. (2006). Identification and localization of TRPC channels in the rat kidney. American Journal of Physiology-Renal Physiology, 290(5), F1241-F1252. https://doi.org/10.1152/ajprenal.00376.2005
- Grahammer, F., Schell, C., & Huber, T. B. (2013). The podocyte slit diaphragm—from a thin grey line to a complex signalling hub. Nature Reviews Nephrology, 9(10), 587-598.
- Gut, N., Piecha, G., Pradel, A., Geldyyev, A., Potemkina, A., Ritz, E., ... & Gross-Weissmann, M. L. (2013). The calcimimetic R-568 prevents podocyte loss in uninephrectomized ApoE−/− mice. American Journal of Physiology-Renal Physiology, 305(3), F277-F285. https://doi.org/10.1152/ajprenal.00514.2012
- Haraldsson, B., Nyström, J., & Deen, W. M. (2008). Properties of the glomerular barrier and mechanisms of proteinuria. Physiological reviews. https://doi.org/10.1152/physrev.00055.2006
- Heeringa, S. F., Möller, C. C., Du, J., Yue, L., Hinkes, B., Chernin, G., ... & Hildebrandt, F. (2009). A novel TRPC6 mutation that causes childhood FSGS. PloS one, 4(11), e7771.https://doi.org/10.1371/journal.pone.0007771
- Hisatsune, C., Kuroda, Y., Nakamura, K., Inoue, T., Nakamura, T., Michikawa, T., ... & Mikoshiba, K. (2004). Regulation of TRPC6 channel activity by tyrosine phosphorylation. Journal of Biological Chemistry, 279(18), 18887-18894. https://doi.org/10.1074/jbc.M311274200
- Hjälm, G., MacLeod, R. J., Kifor, O., Chattopadhyay, N., & Brown, E. M. (2001). Filamin-A binds to the carboxyl-terminal tail of the calcium-sensing receptor, an interaction that participates in CaR-mediated activation of mitogen-activated protein kinase. Journal of Biological Chemistry, 276(37), 34880-34887. https://doi.org/10.1074/jbc.M100784200
- Hofer, A. M., & Brown, E. M. (2003). Extracellular calcium sensing and signalling. Nature reviews Molecular cell biology, 4(7), 530-538.
- Hofmann, T., Schaefer, M., Schultz, G., & Gudermann, T. (2002). Subunit composition of mammalian transient receptor potential channels in living cells. Proceedings of the National Academy of Sciences, 99(11), 7461-7466.https://doi.org/10.1073/pnas.102596199
- Huang, C., Sindic, A., Hill, C. E., Hujer, K. M., Chan, K. W., Sassen, M., ... & Miller, R. T. (2007). Interaction of the Ca2+-sensing receptor with the inwardly rectifying potassium channels Kir4. 1 and Kir4. 2 results in inhibition of channel function. American Journal of Physiology-Renal Physiology, 292(3), F1073-F1081. https://doi.org/10.1152/ajprenal.00269.2006
- Huang, C., Wu, Z., Hujer, K. M., & Miller, R. T. (2006). Silencing of filamin A gene expression inhibits Ca2+-sensing receptor signaling. FEBS letters, 580(7), 1795-1800. https://doi.org/10.1016/j.febslet.2006.02.035
- Huang, M., Gu, G., Ferguson, E. L., & Chalfie, M. (1995). A stomatin-like protein necessary for mechanosensation in C. elegans. Nature, 378(6554), 292-295.https://doi.org/10.1038/378292a0
- Huber, T. B., & Benzing, T. (2005). The slit diaphragm: a signaling platform to regulate podocyte function. Current opinion in nephrology and hypertension, 14(3), 211-216. https:// doi: 10.1097/01.mnh.0000165885.85803.a8
- Huber, T. B., Köttgen, M., Schilling, B., Walz, G., & Benzing, T. (2001). Interaction with podocin facilitates nephrin signaling. Journal of Biological Chemistry, 276(45), 41543-41546.https://doi.org/10.1074/jbc.C100452200
- Huber, T. B., Schermer, B., Müller, R. U., Höhne, M., Bartram, M., Calixto, A., ... & Benzing, T. (2006). Podocin and MEC-2 bind cholesterol to regulate the activity of associated ion channels. Proceedings of the National Academy of Sciences, 103(46), 17079-17086.https://doi.org/10.1073/pnas.0607465103
- Hurtel-Lemaire, A. S., Mentaverri, R., Caudrillier, A., Cournarie, F., Wattel, A., Kamel, S., ... & Brazier, M. (2009). The calcium-sensing receptor is involved in strontium ranelate-induced osteoclast apoptosis: new insights into the associated signaling pathways. Journal of Biological Chemistry, 284(1), 575-584. https://doi.org/10.1074/jbc.M801668200
- Ilatovskaya, D. V., Blass, G., Palygin, O., Levchenko, V., Pavlov, T. S., Grzybowski, M. N., ... & Staruschenko, A. (2018). A NOX4/TRPC6 pathway in podocyte calcium regulation and renal damage in diabetic kidney disease. Journal of the American Society of Nephrology, 29(7), 1917-1927.https://doi.org/10.1681/ASN.2018030280
- Ilatovskaya, D. V., Levchenko, V., Ryan, R. P., Cowley Jr, A. W., & Staruschenko, A. (2011). NSAIDs acutely inhibit TRPC channels in freshly isolated rat glomeruli. Biochemical and biophysical research communications, 408(2), 242-247.https://doi.org/10.1016/j.bbrc.2011.04.005
- Kanda, S., Harita, Y., Shibagaki, Y., Sekine, T., Igarashi, T., Inoue, T., & Hattori, S. (2011). Tyrosine phosphorylation–dependent activation of TRPC6 regulated by PLC-γ1 and nephrin: effect of mutations associated with focal segmental glomerulosclerosis. Molecular biology of the cell, 22(11), 1824-1835.https://doi.org/10.1091/mbc.e10-12-0929
- Kerjaschki, D. (1989). The pathogenesis of membranous glomerulonephritis from morphology to molecules. Virchows Archiv B, 58(1), 253-271.
- Kerjaschki, D. (1994). Dysfunctions of cell biological mechanisms of visceral epithelial cell (podocytes) in glomerular diseases. Kidney international, 45(2), 300-313. https://doi.org/10.1038/ki.1994.39
- Kerjaschki, D., Sharkey, D. J., & Farquhar, M. G. (1984). Identification and characterization of podocalyxin—the major sialoprotein of the renal glomerular epithelial cell. The Journal of cell biology, 98(4), 1591-1596. https://doi.org/10.1083/jcb.98.4.1591
- Kim, J. Y., & Saffen, D. (2005). Activation of M1 muscarinic acetylcholine receptors stimulates the formation of a multiprotein complex centered on TRPC6 channels. Journal of Biological Chemistry, 280(36), 32035-32047.https://doi.org/10.1074/jbc.M500429200
- Kiselyov, K., & Patterson, R. L. (2009). The integrative function of TRPC channels. Front Biosci, 14(14), 45-58.
- Kiselyov, K., Mignery, G. A., Zhu, M. X., & Muallem, S. (1999). The N-terminal domain of the IP3 receptor gates store-operated hTrp3 channels. Molecular cell, 4(3), 423-429.https://doi.org/10.1016/S1097-2765(00)80344-5
- Kiselyov, K., Xu, X., Mozhayeva, G., Kuo, T., Pessah, I., Mignery, G., ... & Muallem, S. (1998). Functional interaction between InsP3 receptors and store-operated Htrp3 channels. Nature, 396(6710), 478-482. https://doi.org/10.1038/24890
- Krall, P., Canales, C. P., Kairath, P., Carmona-Mora, P., Molina, J., Carpio, J. D., ... & Walz, K. (2010). Podocyte-specific overexpression of wild type or mutant trpc6 in mice is sufficient to cause glomerular disease. PloS one, 5(9), e12859.https://doi.org/10.1371/journal.pone.0012859
- Kretzler, M. (2002). Regulation of adhesive interaction between podocytes and glomerular basement membrane. Microscopy research and technique, 57(4), 247-253. https://doi.org/10.1002/jemt.10083
- Kriz, W., Elger, M., Mundel, P., & Lemley, K. V. (1995). Structure-stabilizing forces in the glomerular tuft. Journal of the American Society of Nephrology, 5(10), 1731-1739. https://doi.org/10.1681/ASN.V5101731
- Kriz, W., Hackenthal, E., Nobiling, R., Sakai, T., Elger, M., & Hähnel, B. (1994). A role for podocytes to counteract capillary wall distension. Kidney international, 45(2), 369-376.https://doi.org/10.1038/ki.1994.47
- Kriz, W., Kretzler, M., Provoost, A. P., & Shirato, I. (1996). Stability and leakiness: opposing challenges to the glomerulus. Kidney international, 49(6), 1570-1574.https://doi.org/10.1038/ki.1996.227
- Kwak, J. O., Kwak, J., Kim, H. W., Oh, K. J., Kim, Y. T., Jung, S. M., & Cha, S. H. (2005). The extracellular calcium sensing receptor is expressed in mouse mesangial cells and modulates cell proliferation. Experimental & Molecular Medicine, 37(5), 457-465. https://doi.org/10.1038/emm.2005.56
- Lin, K. I., Chattopadhyay, N., Bai, M., Alvarez, R., Dang, C. V., Baraban, J. M., ... & Ratan, R. R. (1998). Elevated extracellular calcium can prevent apoptosis via the calcium-sensing receptor. Biochemical and biophysical research communications, 249(2), 325-331. https://doi.org/10.1006/bbrc.1998.9124
- Meng, K., Xu, J., Zhang, C., Zhang, R., Yang, H., Liao, C., & Jiao, J. (2014). Calcium sensing receptor modulates extracellular calcium entry and proliferation via TRPC3/6 channels in cultured human mesangial cells. PLoS One, 9(6), e98777. https://doi.org/10.1371/journal.pone.0098777
- Menon, M. C., Chuang, P. Y., & He, C. J. (2012). The glomerular filtration barrier: components and crosstalk. International journal of nephrology, 2012. https://doi.org/10.1155/2012/749010
- Möller, C. C., Flesche, J., & Reiser, J. (2009). Sensitizing the slit diaphragm with TRPC6 ion channels. Journal of the American Society of Nephrology, 20(5), 950-953.https://doi.org/10.1681/ASN.2008030329
- Möller, C. C., Wei, C., Altintas, M. M., Li, J., Greka, A., Ohse, T., ... & Reiser, J. (2007). Induction of TRPC6 channel in acquired forms of proteinuric kidney disease. Journal of the American Society of Nephrology, 18(1), 29-36. https://doi.org/10.1681/ASN.2006091010
- Möller, C. C., Wei, C., Altintas, M. M., Li, J., Greka, A., Ohse, T., ... & Reiser, J. (2007). Induction of TRPC6 channel in acquired forms of proteinuric kidney disease. Journal of the American Society of Nephrology, 18(1), 29-36.https://doi.org/10.1681/ASN.2006091010
- Molostvov, G., Fletcher, S., Bland, R., & Zehnder, D. (2008). Extracellular calcium-sensing receptor mediated signalling is involved in human vascular smooth muscle cell proliferation and apoptosis. Cellular Physiology and Biochemistry, 22(5-6), 413-422. https://doi.org/10.1159/000185484
- Molostvov, G., James, S., Fletcher, S., Bennett, J., Lehnert, H., Bland, R., & Zehnder, D. (2007). Extracellular calcium-sensing receptor is functionally expressed in human artery. American Journal of Physiology-Renal Physiology, 293(3), F946-F955. https://doi.org/10.1152/ajprenal.00474.2006
- Nilius, B., & Szallasi, A. (2014). Transient receptor potential channels as drug targets: from the science of basic research to the art of medicine. Pharmacological reviews, 66(3), 676-814. https://doi.org/10.1124/pr.113.008268
- Ogata, S., Kubota, Y., Satoh, S., Ito, S., Takeuchi, H., Ashizuka, M., & Shirasuna, K. (2006). Ca2+ stimulates COX-2 expression through calcium-sensing receptor in fibroblasts. Biochemical and biophysical research communications, 351(4), 808-814. https://doi.org/10.1016/j.bbrc.2006.10.098
- Oh, J., Beckmann, J., Bloch, J., Hettgen, V., Mueller, J., Li, L., ... & Schmitt, C. P. (2011). Stimulation of the calcium-sensing receptor stabilizes the podocyte cytoskeleton, improves cell survival, and reduces toxin-induced glomerulosclerosis. Kidney international, 80(5), 483-492. https://doi.org/10.1038/ki.2011.105
- Pavenstädt, H., & Bek, M. (2002). Podocyte electrophysiology, in vivo and in vitro. Microscopy research and technique, 57(4), 224-227.https://doi.org/10.1002/jemt.10078
- Pavenstadt, H., Kriz, W., & Kretzler, M. (2003). Cell biology of the glomerular podocyte. Physiological reviews, 83(1), 253-307. https://doi.org/10.1152/physrev.00020.2002
- Perazella, M. A. (2012). Onco-nephrology: renal toxicities of chemotherapeutic agents. Clinical Journal of the American Society of Nephrology, 7(10), 1713-1721.https://doi.org/10.2215/CJN.02780312
- Reiser, J., Kriz, W., Kretzler, M., & Mundel, P. (2000). The glomerular slit diaphragm is a modified adherens junction. Journal of the American Society of Nephrology, 11(1), 1-8. https://doi.org/10.1681/ASN.V1111
- Reiser, J., Polu, K. R., Möller, C. C., Kenlan, P., Altintas, M. M., Wei, C., ... & Pollak, M. R. (2005). TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nature genetics, 37(7), 739-744.https://doi.org/10.1038/ng1592
- Riccardi, D., & Valenti, G. (2016). Localization and function of the renal calcium-sensing receptor. Nature Reviews Nephrology, 12(7), 414-425.
- Satchell, S. C., & Braet, F. (2009). Glomerular endothelial cell fenestrations: an integral component of the glomerular filtration barrier. American Journal of Physiology-Renal Physiology, 296(5), F947-F956. https://doi.org/10.1152/ajprenal.90601.2008
- Schlöndorff, J., Del Camino, D., Carrasquillo, R., Lacey, V., & Pollak, M. R. (2009). TRPC6 mutations associated with focal segmental glomerulosclerosis cause constitutive activation of NFAT-dependent transcription. American Journal of Physiology-Cell Physiology, 296(3), C558-C569.https://doi.org/10.1152/ajpcell.00077.2008
- Sonneveld, R., van der Vlag, J., Baltissen, M. P., Verkaart, S. A., Wetzels, J. F., Berden, J. H., ... & Nijenhuis, T. (2014). Glucose specifically regulates TRPC6 expression in the podocyte in an AngII-dependent manner. The American journal of pathology, 184(6), 1715-1726.https://doi.org/10.1016/j.ajpath.2014.02.008
- Spassova, M. A., Hewavitharana, T., Xu, W., Soboloff, J., & Gill, D. L. (2006). A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proceedings of the National Academy of Sciences, 103(44), 16586-16591.https://doi.org/10.1073/pnas.0606894103
- Tian, D., Jacobo, S. M., Billing, D., Rozkalne, A., Gage, S. D., Anagnostou, T., ... & Greka, A. (2010). Antagonistic regulation of actin dynamics and cell motility by TRPC5 and TRPC6 channels. Science signaling, 3(145), ra77-ra77.DOI: 10.1126/scisignal.2001200
- Tryggvason, K., & Wartiovaara, J. (2005). How does the kidney filter plasma?. Physiology, 20(2), 96-101. https://doi.org/10.1152/physiol.00045.2004
- Vassilev, P. M., Kanazirska, M. P., Ye, C., Francis, J., Hong, K., & Brown, E. M. (1997). A flickery block of a K+ channel mediated by extracellular Ca2+ and other agonists of the Ca2+-sensing receptors in dispersed bovine parathyroid cells. Biochemical and biophysical research communications, 230(3), 616-623. https://doi.org/10.1006/bbrc.1996.6017
- Venkatachalam, K., & Montell, C. (2007). TRP channels. Annu. Rev. Biochem., 76, 387-417. https://doi.org/10.1146/annurev.biochem.75.103004.142819
- Verma, R., Kovari, I., Soofi, A., Nihalani, D., Patrie, K., & Holzman, L. B. (2006). Nephrin ectodomain engagement results in Src kinase activation, nephrin phosphorylation, Nck recruitment, and actin polymerization. The Journal of clinical investigation, 116(5), 1346-1359.https://doi.org/10.1172/JCI27414
- Wang, L., Jirka, G., Rosenberg, P. B., Buckley, A. F., Gomez, J. A., Fields, T. A., ... & Spurney, R. F. (2015). Gq signaling causes glomerular injury by activating TRPC6. The Journal of clinical investigation, 125(5), 1913-1926.https://doi.org/10.1172/JCI76767
- Watanabe, H., Murakami, M., Ohba, T., Ono, K., & Ito, H. (2009). The pathological role of transient receptor potential channels in heart disease. Circulation Journal, 0902040259-0902040259.https://doi.org/10.1253/circj.CJ-08-1153
- Whitfield, J. F. (2009). The calcium-sensing receptor-a driver of colon cell differentiation. Current pharmaceutical biotechnology, 10(3), 311-316. https://doi.org/10.2174/138920109787847510
- Winn, M. P., Conlon, P. J., Lynn, K. L., Farrington, M. K., Creazzo, T., Hawkins, A. F., ... & Rosenberg, P. B. (2005). A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science, 308(5729), 1801-1804. https://doi.org/10.1126/science.1106215
- Winn, M. P., Daskalakis, N., Spurney, R. F., & Middleton, J. P. (2006). Unexpected role of TRPC6 channel in familial nephrotic syndrome: does it have clinical implications?. Journal of the American Society of Nephrology.
- Woudenberg-Vrenken, T. E., Bindels, R. J., & Hoenderop, J. G. (2009). The role of transient receptor potential channels in kidney disease. Nature Reviews Nephrology, 5(8), 441-449.https://doi.org/10.1038/nrneph.2009.100
- Young, S. H., & Rozengurt, E. (2002). Amino acids and Ca2+ stimulate different patterns of Ca2+ oscillations through the Ca2+-sensing receptor. American Journal of Physiology-Cell Physiology, 282(6), C1414-C1422. https://doi.org/10.1152/ajpcell.00432.2001
- Zhang, L., Ji, T., Wang, Q., Meng, K., Zhang, R., Yang, H., ... & Jiao, J. (2017). Calcium-sensing receptor stimulation in cultured glomerular podocytes induces TRPC6-dependent calcium entry and RhoA activation. Cellular Physiology and Biochemistry, 43(5), 1777-1789. https://doi.org/10.1159/000484064
- Zhang, X., Song, Z., Guo, Y., & Zhou, M. (2015). The novel role of TRPC6 in vitamin D ameliorating podocyte injury in STZ-induced diabetic rats. Molecular and cellular biochemistry, 399(1), 155-165.https://doi.org/10.1007/s11010-014-2242-9
- Zhu, M. X. (2005). Multiple roles of calmodulin and other Ca2+-binding proteins in the functional regulation of TRP channels. Pflügers Archiv, 451(1), 105-115. https://doi.org/10.1007/s00424-005-1427-1
Published Date : 2021-05-07