Pharmacokinetic Studies of Curcumin Based Pyrazoline MAO Inhibitors

Abstract

Background: Curcumin is a natural phenolic compound obtained from Curcuma longa, with proven human monoamine oxidase (MAO) inhibitory activity, but due to its poor oral bioavailability, blood-brain barrier permeability and extensive metabolism in the liver, it has never been recognized as a drug candidate.

Purpose: In this study, the structure-based-drug design (SBDD) was adopted to incorporate the structural features of Curcumin with an aim to improve drug permeability and metabolic stability.

Method: A series of ferulic amides (half portion of curcumin) (1-3) and curcumin based pyrazolinescompounds (4-6) were designed and Curcumintested for their membrane permeability and liver microsomal metabolic stability in a various animal in an in-vitro assay system.

Conclusion: All the designed compounds showed a significant enhancement in permeability and metabolic stability is achieved through chemical modification.

  • Page Number : 85-89
  • Keywords
    Structure-based-drug design, Curcumin based Pyrazoline analogues, Ferulic acid amides, MDCK-II permeability studies, Liver microsomal metabolic stability studies
  • DOI Number
    10.15415/jptrm.2020.82012
  • Authors
    • Vishnu Nayak Badavath
    • Venkatesan Jayaprakash
    • Susanta Kumar Mondal
    • Sandeep Arora
    • Orlando Acevedo
    • Abhishek Thakur
    • Rajasekhara Reddy Iska

References

  • Badavath, V. N., & Jayaprakash, V. (2021). MAO Inhibitory Activity Of 4, 5-Dihydro-1 H-Pyrazole Derivatives: A Platform To Design Novel Antidepressants. Frontiers in Drug Design & Discovery, 10, 47-91. https://doi.org/10.2174/9789811421563121100005
  • Badavath, V. N., Baysal, I., Uçar, G., Mondal, S. K., Sinha, B. N., & Jayaprakash, V. (2016). Monoamine Oxidase Inhibitory Activity of Ferulic Acid Amides: Curcumin- Based Design and Synthesis. Archiv der Pharmazie, 349(1), 9-19. https://doi.org/10.1002/ardp.201500317
  • Badavath, V. N., Baysal, I., Ucar, G., Sinha, B. N., & Jayaprakash, V. (2016). Monoamine Oxidase Inhibitory Activity of Novel Pyrazoline Analogues: Curcumin Based Design and Synthesis. ACS Medicinal Chemistry Letters, 7(1), 56-61. https://doi.org/10.1021/acsmedchemlett.5b00326
  • Badavath, V. N., Jadav, S. S., Pastorino, B., de Lamballerie, X., Sinha, B. N., & Jayaprakash, V. (2016). Synthesis and Antiviral Activity of 2-aryl-4H-chromen-4-one Derivatives Against Chikungunya Virus. Letters in Drug Design & Discovery, 13(10), 1019-1024. https://doi.org/10.2174/1570180813666160711163 349
  • Badavath, V. N., Nath, C., Ganta, N. M., Ucar, G., Sinha, B. N., & Jayaprakash, V. (2017). Design, synthesis and MAO inhibitory activity of 2-(arylmethylidene)-2, 3-dihydro-1-benzofuran-3-one derivatives. Chinese Chemical Letters, 28(7), 1528-1532. https://doi.org/10.1016/j.cclet.2017.02.009
  • Badavath, V. N., Ucar, G., Sinha, B. N., Mondal, S. K., & Jayaprakash, V. (2016). Monoamine Oxidase Inhibitory Activity of Novel Pyrazoline Analogues: Curcumin Based Design and Synthesis-II. Chemistry Select, 1(18), 5879-5884. https://doi.org/10.1002/slct.201600914
  • Dagar, P., Dahiya, P., & Bhambi, M. (2014). Recent advances in curcumin nanoformulations. Nano Science & Nano Technology: An Indian Journal, 8(12), 458-474.
  • Di, L., et al. (2003). Optimization of a higher throughput microsomal stability screening assay for profiling drug discovery candidates. Journal of Biomolecular Screening, 8(4), 453-462. https://doi.org/10.1177/1087057103255988
  • Di, L., et al. (2011). Development of a new permeability assay using low‐efflux MDCKII cells. Journal of Pharmaceutical Sciences, 100(11), 4974-4985. https://doi.org/10.1002/jps.22674
  • Irvine, J. D., Takahashi, L., Lockhart, K., Cheong, J., Tolan, J. W., Selick, H. E., & Grove, J. R. (1999). MDCK (Madin-Darby canine kidney) cells: a tool for membrane permeability screening. Journal of Pharmaceutical Sciences, 88(1), 28-33. https://doi.org/10.1021/js9803205
  • Jadav, S. S., et al. (2015). Design, synthesis, optimization and antiviral activity of a class of hybrid dengue virus E protein inhibitors. Bioorganic and Medicinal Chemistry Letters, 28(8), 1747-1752. https://doi.org/10.1016/j.bmcl.2015.02.059
  • Kellard, L., & Engelstein, M. (2007). Automation of cell-based and non cell-based permeability assays. Journal of the Association for Laboratory Automation, 12(2), 104-109. https://doi.org/10.1016/j.jala.2006.10.008
  • Mondal, S. K., Mazumdar, U. K., Mondal, N. B., & Banerjee, S. (2008). Optimization of rat liver microsomal stability assay using HPLC. Journal of Biological Sciences, 8(6), 1110-1114. https://doi.org/10.3923/jbs.2008.1110.1114
  • Narender, T., Venkateswarlu, K., Nayak, B. V., & Sarkar, S. (2011). A new chemical access for 3’-acetyl-4’-hydroxychalcones using borontrifluoride-etherate via a regionselective Claisen-Schmidt condensation and its application in the synthesis of chalcone hybrids. Tetrahedron Letters, 52(44), 5794-5798. https://doi.org/10.1016/j.tetlet.2011.08.120
  • Nath, C., Badavath, V. N., Thakur, A., Ucar, G., Acevedo, O., Mohd Siddique, M. U., & Jayaprakash, V. (2018). Curcumin-based pyrazoline analogues as selective inhibitors of human monoamine oxidase A. MedChemComm., 9(7), 1164-1171. https://doi.org/10.1039/C8MD00196K
  • Nayak, B. V., Ciftci-Yabanoglu, S., Bhakat, S., Timiri, A. K., Sinha, B. N., Ucar, G., Soliman, M. E. S., & Jayaprakash, V. (2015). Monoamine oxidase inhibitory activity    of 2-aryl-4H-chromen-4-ones. Bioorganic Chemistry, 58, 72-80. https://doi.org/10.1016/j.bioorg.2014.11.008
  • Nayak, B. V., Ciftci-Yabanoglu, S., Jadav, S. S., Jagrat, M., Sinha, B. N., Ucar, G., & Jayaprakash, V. (2013). Monoamine oxidase inhibitory activity of 3, 5-biaryl-4, 5-dihydro-1H- pyrazole-1-carboxylate derivatives. European Journal of Medicinal Chemistry, 69, 762-767. https://doi.org/10.1016/j.ejmech.2013.09.010
  • Pan, M. -H., Huang, T. -M., & Lin, J. -K. (1999). Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metabolism and Disposition, 27(4), 486-494.
  • Prasad, S., Tyagi, A. K., & Aggarwal, B. B. (2014). Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: The  golden  pigment from golden spice. Cancer Research and Treatment , 46(1), 2-18. https://doi.org/10.4143/crt.2014.46.1.2
  • Singh, P. K., Wani, K., Kaul-Ghanekar, R., Prabhune, A., & Ogale, S. (2014). From micron to nano-curcumin by sophorolipid co-processing: highly enhanced bioavailability, fluorescence, and anti-cancer efficacy. RSC Advances, 4(104), 60334-60341. https://doi.org/10.1039/C4RA07300B
  • Wahlang, B., Pawar, Y. B., & Bansal, A. K. (2011). Identification of permeability-related hurdles in oral delivery of curcumin using the Caco-2 cell model. European Journal of Pharmaceutics and Biopharmaceutics, 77(2), 275-282. https://doi.org/10.1016/j.ejpb.2010.12.006
  • Yallapu, M. M., Jaggi, M., & Chauhan, S. C. (2012). Curcumin nanoformulations: a future nanomedicine for cancer. Drug Discovery Today, 17(1-2), 71-80. https://doi.org/10.1016/j.drudis.2011.09.009
  • Yasmin, S., et al. (2020). A Series of Ferulic Acid Amides Reveals Unexpected Peroxiredoxin 1Inhibitory Activity with in vivo Antidiabetic and Hypolipidemic Effects. ChemMedChem, 15, 1-16. https://doi.org/10.1002/cmdc.202000564

  • Published Date : 2020-11-17