Molecular Docking Approach to Identify Potential AntiCandidal Potential of Curcumin.

Abstract

Background: Candida albicans is a kind of fungus that can lead to mortality. In the presence of the enzyme Lanosterol-demethylase, Ergosterol, the major sterol in the fungal cell membrane, is the resulting product of Lanosterol (Cytochrome P450DM).

Purpose: Azole antifungal drugs target this enzyme as a target enzyme. The work included selecting and modelling the target enzyme. Cucumin’s inhibitory effect on Cytochrome P450 was tested utilising molecular docking experiments.

Methods: Chem sketch was used to create compound structures, and Molergo Virtual Docker was used to do molecular docking.

Results: All of the curcumin and conventional medicines, such as Ketoconazole, Clotrimazole, and Miconazole, have interaction with 14-demethylase amino acid residues, Haem and water molecules in the target site, as per the docking research.

  • Page Number : 67–71
  • Keywords
    Antifungal medications, Candida albicans, 14α-demethylase, Molecular docking, Molecular modeling
  • DOI Number
    10.15415/jptrm.2020.82008
  • Authors
    • Nidhi Rani Chitkara College of Pharmacy, Chitkara University, Punjab, India.
    • Prerna Sharma Vikas Kumar Sharma, Guru Gobind Singh College of Pharmacy, Yamuna Nagar, 135001, Haryana, India.
    • Praveen Kuma SunPharma, Hill Top Area, Vill. Bhatolikalan, P.O.Barotiwala, Distt.Solan, Himachal Pardesh, India-174103.

References

  • Arif, T., Bhosale, J. D., Kumar, N., Mandal, T. K., Bendre, R. S., Lavekar, G. S., & Dabur, R. (2009). Natural products-antifungal agents derived from plants. Journal of Asian Natural Products Research, 11(7), 621–638. doi:10.1080/10286020902942350
  • Bandyopadhyay, D. (2014). Farmer to pharmacist: Curcumin as an anti-invasive and antimetastatic agent for the treatment of cancer. Frontiers in Chemistry, 2, 113. doi:10.3389/fchem.2014.00113
  • Eigner, D., & Scholz, D. (1999). Ferula asa-foetida and Curcuma longa in traditional medical treatment and diet in Nepal. Journal of Ethnopharmacology, 67(1), 1–6. doi:10.1016/s0378-8741(98)00234-7
  • Fromtling, R. A. (1988). Overview of medically important antifungal azole derivatives. Clinical Microbiology Reviews, 1(2), 187–217. doi:10.1128/CMR.1.2.187
  • Gargoubi, S. et al. (2015). Concentrated natural dye extracted from turmeric spice and its use for textile dyeing. Moroccan Journal of Chemistry, 3(3), 369–378.
  • Govindarajan, V. S., & Stahl, W. H. (1980). Turmeric—Chemistry, technology, and quality. Critical Reviews in Food Science and Nutrition, 12(3), 199–301. doi:10.1080/10408398009527278
  • Gupta, G. K., Rani, N., & Kumar, V. (2012). Microwave assisted synthesis of imidazoles-A review. Mini-Reviews in Organic Chemistry, 9(3), 270–284. doi:10.2174/1570193X11209030270
  • Gupta, S. C., Sung, B., Kim, J. H., Prasad, S., Li, S., & Aggarwal, B. B. (2013). Multitargeting by turmeric, the golden spice: From kitchen to clinic. Molecular Nutrition and Food Research, 57(9), 1510–1528. doi:10.1002/mnfr.201100741
  • Hay, R. J. (2006). Fungal infections. Clinics in Dermatology, 24(3), 201–212. doi:10.1016/j.clindermatol.2005.11.011
  • Ji, H., Zhang, W., Zhou, Y., Zhang, M., Zhu, J., Song, Y., Lu, J., & Zhu, J. (2000). A three-dimensional model of lanosterol 14α-demethylase of Candida albicans and its interaction with azole antifungals. Journal of Medicinal Chemistry, 43(13), 2493–2505. doi:10.1021/jm990589g
  • Kitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: Methods and applications. Nature Reviews. Drug Discovery, 3(11), 935–949. doi:10.1038/nrd1549
  • Maurice, H. B., Tuarira, E., & Mwambete, K. (2009). Virtual high screening throughput and design of 14α-lanosterol demethylase inhibitors against Mycobacterium tuberculosis. African Journal of Biotechnology, 8, 3072–3078.
  • Menozzi, G., Merello, L., Fossa, P., Schenone, S., Ranise, A., Mosti, L., . . . Tamburini, E. (2004). Synthesis, antimicrobial activity and molecular modeling studies of halogenated 4-[1H-imidazol-1-yl(phenyl)methyl]-1,5-diphenyl-1H-pyrazoles. Bioorganic and Medicinal Chemistry, 12(20), 5465–5483. doi:10.1016/j.bmc.2004.07.029
  • Prasad, S., Gupta, S. C., Tyagi, A. K., & Aggarwal, B. B. (2014). Curcumin, a component of golden spice: From bedside to bench and back. Biotechnology Advances, 32(6), 1053–1064. doi:10.1016/j.biotechadv.2014.04.004
  • Rani, N., & Singh, R. (2017). Molecular modeling investigation of some new 2-mercaptoimidazoles. Current Computer-Aided Drug Design, 13(1), 48–56. doi:10.2174/1573409912666160915154939.
  • Rani, N., & Singh, R. (2018). Molecular modeling study of fluoro substituted imidazole derivatives as 14α-demethylase inhibitors. Int. J. Drug Res. Techn., 7(7), 297–317.
  • Rani, N., & Singh, R. (2019). Design, synthesis, antimicrobial evaluation and molecular modeling study of new 2-mercaptoimidazoles (Series-III). Letters in Drug Design and Discovery, 16(5), 512–521. doi:10.2174/1570180815666181015144431
  • Rani, N., & Singh, R. (2019). Molecular modeling studies of 1,4-diaryl-2-mercaptoimidazole derivatives for antimicrobial potency. Current Computer-Aided Drug Design, 15(5), 409–420. doi:10.2174/1573409915666181219124956
  • Rani, N., Kumar, P., & Singh, R. (2019). Synthesis, Molecular Docking and Biological Evaluation of 2-Mercaptoimidazoles using solid phase synthesis. Combinatorial Chemistry and High Throughput Screening, 22(2), 89–96. doi:10.2174/1386207322666190425150818
  • Rani, N., Kumar, P., & Singh, R.. (2020). Molecular modeling studies of halogenated imidazoles against 14α-Demethylase from Candida albicans for treating fungal infections. Infectious Disorders Drug Targets, 20(2), 208–222. doi:10.2174/1871526519666181130101054
  • Rani, N., Kumar, P., Singh, R., & Sharma, A. (2015). Molecular Docking evaluation of imidazole analogues as potent C. albicans 14α-demethylase inhibitors. Current Computer-Aided Drug Design, 11(1), 8–20. doi:10.2174/1573409911666150617113645
  • Rani, N., Sharma, A., & Singh, R. (2013). Imidazoles as promising scaffold for antibacterial activity: A review. Mini Reviews in Medicinal Chemistry, 13(12), 1812–1835. doi:10.2174/13895575113136660091
  • Rani, N., Sharma, A., & Singh, R. (2014). Trisubstituted imidazole synthesis: A review. Mini-Reviews in Organic Chemistry, 12(1), 34–65. doi:10.2174/1570193X11666141028235010
  • Rani, N., Sharma, A., Gupta, G. K., & Singh, R. (2013). Imidazoles as potential antifungal agents: A review. Mini Reviews in Medicinal Chemistry, 13(11), 1626–1655. doi:10.2174/13895575113139990069
  • Thomsen, R., & Christensen, M. H. (2006). MolDock: A new technique for high-accuracy molecular docking. Journal of Medicinal Chemistry, 49(11), 3315–3321. doi:10.1021/jm051197e
  • Trujillo, J., Chirino, Y. I., Molina-Jijón, E., Andérica-Romero, A. C., Tapia, E., & Pedraza-Chaverrí, J. (2013). Renoprotective effect of the antioxidant curcumin: Recent findings. Redox Biology, 1(1), 448–456. doi:10.1016/j.redox.2013.09.003
  • Varoli, L., Burnelli, S., Garuti, L., & Vitali, B. (2001). Synthesis and antimicrobial activity of new diazoimidazole derivatives containing an N-actlpyrrolidine ring. Farmaco, 56(11), 885–890. doi:10.1016/s0014-827x(01)01154-5

  • Published Date : 2020-11-17