Buccal Mucoadhesive Systems for Antihypertensive Drugs: A Comprehensive Review of Formulation and Therapeutic Applications

Abstract

Background: Hypertension is a major health burden globally despite the development of effective pharmacotherapy. Conventional oral administration of antihypertensives may be associated with poor bioavailability because of extensive first-pass metabolism as well as degradation in the gastrointestinal tract. A buccal patch using mucoadhesive technology has been recognized as an innovative approach to multidrug therapy for hypertension.

Purpose: The review highlights the status of research in buccal mucoadhesive patches as a delivery system for antihypertensives.

Methods: The relevant literature was scrutinized for formulation methods, choice of polymers and excipients, physicochemical characterization, and advances that have occurred in patch design. The critical focus was also on permeation enhancers, nanoenabled patch systems, multilayered patch systems, and issues related to their preparation, stability, packaging, and regulatory concerns.

Results: Buccal mucoadhesive patches showed improved drug bioavailability, controlled and sustained drug release, and enhanced therapeutic efficiency. Advanced designs, such as those incorporating permeation promoters, nano formulations, and layered structures, demonstrated enhanced performance in terms of drug permeation and control of release, with reduced dosing frequencies and minimized side effects.

Conclusion: Buccal mucoadhesive patch technology is a promising and innovative drug delivery technology for antihypertensive medications. By providing a controlled and consistent level of the drug and improving patient compliance, this technology has the potential to greatly alter the approach to treating this condition.

  • Page Number : 22-47
  • Published Date : 2026-02-17
  • Keywords
    Buccal drug delivery, Mucoadhesive patches, Antihypertensive drugs, Bioavailability enhancement, Permeation enhancers, Multi-layered patches, Patient compliance, Therapeutic application
  • DOI Number
    10.15415/jptrm.2025.132002
  • Authors
    Divyanshu, Jatin Agarwal, Km. Pinki, Harpreet Singh, and Arun Kumar Mishra

References

  • Abd Elrady, A. N., Elkhatib, M. M., Mohamed, M. I., & Fatouh, A. M. (2026). Spanlastics-loaded buccal films for improved olmesartan delivery and sustained hypertension management: Formulation, statistical optimization, in vitro and in vivo evaluation. Journal of Pharmaceutical Innovation, 21(2), 156.
  • Abstracts of the European Association of Poisons Centres and Clinical Toxicologists XXVI International Congress. (2006). Clinical Toxicology, 44(4), 401–586. https://doi.org/10.1080/15563650600671811
  • Adepu, S., & Ramakrishna, S. (2021). Controlled drug delivery systems: Current status and future directions. Molecules, 26(19), 5905. https://doi.org/10.3390/molecules26195905
  • Akbari, J., Saeedi, M., Ahmadi, F., Hashemi, S. M. H., Babaei, A., Yaddollahi, S., Rostamkalaei, S. S., Asare-Addo, K., & Nokhodchi, A. (2022). Solid lipid nanoparticles and nanostructured lipid carriers: A review of the methods of manufacture and routes of administration. Pharmaceutical Development and Technology, 27(5), 525–544. https://doi.org/10.1080/10837450.2022.2084554
  • Al Ragib, A., Chakma, R., Dewan, K., Islam, T., Kormoker, T., & Idris, A. M. (2022). Current advanced drug delivery systems: Challenges and potentialities. Journal of Drug Delivery Science and Technology, 76. https://doi.org/10.1016/j.jddst.2022.103727
  • Al Shawakri, E., Ashour, E. A., Elkanayati, R. M., Almutairi, M., Omari, S., AlShammari, N., & Repka, M. A. (2025). Fabrication of gastroretentive and extended-release famotidine floating tablets via fused deposition modeling. AAPS PharmSciTech, 26(8). https://doi.org/10.1208/s12249-025-03237-x
  • Albakr, L., Du, H., Zhang, X., Kathuria, H., Fahmi Anwar-Fadzil, A., Wheate, N. J., & Kang, L. (2024). Progress in lipid and inorganic nanocarriers for enhanced skin drug delivery. Advanced NanoBiomed Research, 4(6). https://doi.org/10.1002/ANBR.202400003
  • Al-Makki, A., DiPette, D., Whelton, P. K., Murad, M. H., Mustafa, R. A., Acharya, S., Beheiry, H. M., Champagne, B., Connell, K., Cooney, M. T., Ezeigwe, N., Gaziano, T. A., Gidio, A., Lopez-Jaramillo, P., Khan, U. I., Kumarapeli, V., Moran, A. E., Silwimba, M. M., Rayner, B., … Khan, T. (2022). Hypertension pharmacological treatment in adults: A World Health Organization guideline executive summary. Hypertension, 79(1), 293–301. https://doi.org/10.1161/HYPERTENSIONAHA.121.18192
  • Alqahtani, M. S., Kazi, M., Alsenaidy, M. A., & Ahmad, M. Z. (2021). Advances in oral drug delivery. Frontiers in Pharmacology, 12.
  • Asane, G. S., Nirmal, S. A., Rasal, K. B., Naik, A. A., Mahadik, M. S., & Rao, Y. M. (2008). Polymers for mucoadhesive drug delivery system: A current status. Drug Development and Industrial Pharmacy, 34(11), 1246–1266. https://doi.org/10.1080/03639040802026012
  • Authimoolam, S. P., Vasilakes, A. L., Shah, N. M., Puleo, D. A., & Dziubla, T. D. (2014). Synthetic oral mucin mimic from polymer micelle networks. Biomacromolecules, 15(8), 3099–3111. https://doi.org/10.1021/BM5006917
  • Baertschi, S. W., Alsante, K. M., & Tønnesen, H. H. (2010). A critical assessment of the ICH guideline on photostability testing of new drug substances and products (Q1B): Recommendation for revision. Journal of Pharmaceutical Sciences, 99(7), 2934–2940. https://doi.org/10.1002/jps.22076
  • Bahraminejad, S., & Almoazen, H. (2025). Sublingual and buccal delivery: A historical and scientific prescriptive. Pharmaceutics, 17(8). https://doi.org/10.3390/pharmaceutics17081073
  • Bayer, I. S. (2022). Recent advances in mucoadhesive interface materials, mucoadhesion characterization, and technologies. Advanced Materials Interfaces, 9(18). https://doi.org/10.1002/ADMI.202200211
  • Beckett, A. H., & Hossie, R. D. (1971). Buccal absorption of drugs. In Concepts in biochemical pharmacology (pp. 25–46). https://doi.org/10.1007/978-3-642-65052-9_3
  • Berben, P., & Borbás, E. (2024). Intestinal drug absorption: Cell-free permeation systems. In Drug discovery and evaluation: Safety and pharmacokinetic assays (3rd ed., Vol. 2, pp. 1593–1621). https://doi.org/10.1007/978-3-031-35529-5_95
  • Bird, D., & Ravindra, N. M. (2020). Transdermal drug delivery and patches—An overview. Medical Devices & Sensors, 3(6). https://doi.org/10.1002/MDS3.10069
  • Birer, M., & Acartürk, F. (2021). Electrospun orally disintegrating film formulation of telmisartan. Pharmaceutical Development and Technology, 26(6), 661–672. https://doi.org/10.1080/10837450.2021.1916031
  • Borges, A. F., Silva, C., Coelho, J. F. J., & Simões, S. (2015). Oral films: Current status and future perspectives: I—Galenical development and quality attributes. Journal of Controlled Release, 206, 1–19. https://doi.org/10.1016/j.jconrel.2015.03.006
  • Breslin, J. W., Yang, Y., Scallan, J. P., Sweat, R. S., Adderley, S. P., & Murfee, W. L. (2018). Lymphatic vessel network structure and physiology. Comprehensive Physiology, 9(1), 207. https://doi.org/10.1002/CPHY.C180015
  • Brough, C., Miller, D. A., Keen, J. M., Kucera, S. A., Lubda, D., & Williams, R. O. (2016). Use of polyvinyl alcohol as a solubility-enhancing polymer for poorly water-soluble drug delivery (Part 1). AAPS PharmSciTech, 17(1), 167–179. https://doi.org/10.1208/S12249-015-0458-Y
  • Caon, T., Jin, L., Simões, C. M. O., Norton, R. S., & Nicolazzo, J. A. (2015). Enhancing the buccal mucosal delivery of peptide and protein therapeutics. Pharmaceutical Research, 32(1), 1–21. https://doi.org/10.1007/S11095-014-1485-1
  • Carias, A. M., & Hope, T. J. (2018). Barriers of mucosal entry of HIV/SIV. Current Immunology Reviews, 15(1), 4–13. https://doi.org/10.2174/1573395514666180604084404
  • Çelik, B. (2017). Risperidone mucoadhesive buccal tablets: Formulation design, optimization and evaluation. Drug Design, Development and Therapy, 11, 3355–3365. https://doi.org/10.2147/DDDT.S150774
  • Cheng, X., Yang, Y., Liao, Z., Yi, Q., Zhou, Y., Dai, X., Liu, Y., & Liu, O. (2023). Drug-loaded mucoadhesive microneedle patch for the treatment of oral submucous fibrosis. Frontiers in Bioengineering and Biotechnology, 11.
  • Chetty, D. J., Chen, L. L. H., & Chien, Y. W. (2001). Characterization of captopril sublingual permeation: Determination of preferred routes and mechanisms. Journal of Pharmaceutical Sciences, 90(11), 1868–1877. https://doi.org/10.1002/jps.1136
  • Chinna Reddy, P., Chaitanya, K. S. C., & Madhusudan Rao, Y. (2011). A review on bioadhesive buccal drug delivery systems: Current status of formulation and evaluation methods. DARU Journal of Pharmaceutical Sciences, 19(6), 385. https://pmc.ncbi.nlm.nih.gov/articles/PMC3436075/
  • Choi, Y., Won, J. H., Kim, H., Hong, Y. S., Kim, Y., & Lee, H. (2025). Country contribution to investigators of pivotal clinical trials and their primary publications of new drugs approved by the US Food and Drug Administration, 2012–2021. Clinical Pharmacology and Therapeutics, 117(4), 1131–1141. https://doi.org/10.1002/cpt.3589
  • Ciolacu, D. E., Nicu, R., & Ciolacu, F. (2020). Cellulose-based hydrogels as sustained drug-delivery systems. Materials, 13(22), 5270. https://doi.org/10.3390/MA13225270
  • Cionca, N., Müller, N., & Mombelli, A. (2015). Two-piece zirconia implants supporting all-ceramic crowns: A prospective clinical study. Clinical Oral Implants Research, 26(4), 413–418. https://doi.org/10.1111/clr.12370
  • Concha, V. O. C., Bahú, J. O., Crivellin, S., Khouri, N. G., Munoz, F. L., Souza, S. D. A., Yoshida, M. C. P., Severino, P., Concha, L. S. C., Lopes, M. S., & Souto, E. B. (2025). Harnessing electrospinning for improvement of polymeric drug delivery systems. Polymer Bulletin, 82(11), 5909–5943. https://doi.org/10.1007/S00289-025-05710-W
  • Connor, D., Laurent, D., & Thomas, C. (2016). Crosslinked mucin hydrogels for drug delivery. Frontiers in Bioengineering and Biotechnology, 4.
  • Dawson, D. V., Drake, D. R., Hill, J. R., Brogden, K. A., Fischer, C. L., & Wertz, P. W. (2013). Organization, barrier function and antimicrobial lipids of the oral mucosa. International Journal of Cosmetic Science, 35(3), 220–223. https://doi.org/10.1111/ICS.12038
  • de Vries, M. E., Boddé, H. E., Busscher, H. J., & Junginger, H. E. (1988). Hydrogels for buccal drug delivery: Properties relevant for muco-adhesion. Journal of Biomedical Materials Research, 22(11), 1023–1032. https://doi.org/10.1002/JBM.820221106
  • Desai, P. P., Date, A. A., & Patravale, V. B. (2012). Overcoming poor oral bioavailability using nanoparticle formulations: Opportunities and limitations. Drug Discovery Today: Technologies, 9(2). https://doi.org/10.1016/j.ddtec.2011.12.001
  • Fallon, M., Giusti, R., Aielli, F., Hoskin, P., Rolke, R., Sharma, M., & Ripamonti, C. I. (2018). Management of cancer pain in adult patients: ESMO Clinical Practice Guidelines. Annals of Oncology, 29, iv166–iv191. https://doi.org/10.1093/annonc/mdy152
  • Freiberg, S., & Zhu, X. X. (2004). Polymer microspheres for controlled drug release. International Journal of Pharmaceutics, 282(1–2), 1–18. https://doi.org/10.1016/j.ijpharm.2004.04.013
  • Gao, D., Wang, G., Wu, H., Wu, J. H., & Zhao, X. (2023). Prediction for plasma trough concentration and optimal dosing of imatinib under multiple clinical situations using physiologically based pharmacokinetic modeling. ACS Omega, 8(15), 13741–13753. https://doi.org/10.1021/acsomega.2c07967
  • Gao, X., Ju, R., Zhang, S., Chen, O., Huo, F., He, M., & Tian, W. (2025). Janus bilayer hydrogel dressing with enhanced long-term wet adhesion via physical-covalent synergistic mechanism for oral mucosal wound healing. Advanced Healthcare Materials. https://doi.org/10.1002/adhm.202504498
  • Gilhotra, R. M., Ikram, M., Srivastava, S., & Gilhotra, N. (2013). A clinical perspective on mucoadhesive buccal drug delivery systems. Journal of Biomedical Research, 28(2), 81. https://doi.org/10.7555/JBR.27.20120136
  • Gupta, V., Hwang, B. H., Doshi, N., & Mitragotri, S. (2013). A permeation enhancer for increasing transport of therapeutic macromolecules across the intestine. Journal of Controlled Release, 172(2), 541–549. https://doi.org/10.1016/j.jconrel.2013.05.002
  1. S. M. D. (2024). Review on buccal drug delivery systems. International Journal for Multidisciplinary Research, 6(6). https://doi.org/10.36948/ijfmr.2024.v06i06.34042
  • Haddadzadegan, S., Summonte, S., Ricci, F., Sandmeier, M., & Bernkop-Schnürch, A. (2025). Intraoral drug delivery: Bridging the gap between academic research and industrial innovations. Advanced Functional Materials, 35(35). https://doi.org/10.1002/adfm.202500157
  • He, S., & Mu, H. (2023). Microenvironmental pH modification in buccal/sublingual dosage forms for systemic drug delivery. Pharmaceutics, 15(2), 637. https://doi.org/10.3390/PHARMACEUTICS15020637
  • Hoseinifar, M. J., Aghaz, F., Godazi Langroudi, I., Bagheri, F., & Tahvilian, R. (2025). Development of morphine-loaded polymer nanoparticle oral films and their in vitro impact on fibroblast cells. BioNanoScience, 15(3). https://doi.org/10.1007/S12668-025-02059-2
  • Igbokwe, N. N., Ismail, E. A., Obakachi, V. A., Gamede, M., Karpoormath, R., & Faya, M. (2025). A highly sensitive RP HPLC-PDA analytical method for detection and quantification of a newly synthesized (E-2-((E)-4-(5-ethoxy-3-methyl-1-phenyl-1H-pyrazole-4-yl)but-3-en-2-ylidene)) hydrazine-1-carbothioamide in nanosuspension. Separation Science Plus, 8(1). https://doi.org/10.1002/sscp.202400201
  • Jacob, S., Nair, A. B., Boddu, S. H. S., Gorain, B., Sreeharsha, N., & Shah, J. (2021). An updated overview of the emerging role of patch and film-based buccal delivery systems. Pharmaceutics, 13(8), 1206. https://doi.org/10.3390/PHARMACEUTICS13081206
  • Jeong, W. Y., Kwon, M., Choi, H. E., & Kim, K. S. (2021). Recent advances in transdermal drug delivery systems: A review. Biomaterials Research, 25(1). https://doi.org/10.1186/S40824-021-00226-6
  • Kajal, K., Ganesh, V., & Sethi, S. (2023). Physiological role of liver and interpreting liver function tests. In Peri-operative anesthetic management in liver transplantation (pp. 15–30). https://doi.org/10.1007/978-981-19-6045-1_2
  • Kali, G., Özkahraman, B., Laffleur, F., Knoll, P., Wibel, R., Zöller, K., & Bernkop-Schnürch, A. (2023). Thiolated cellulose: A dual-acting mucoadhesive and permeation-enhancing polymer. Biomacromolecules, 24(11), 4880–4889. https://doi.org/10.1021/ACS.BIOMAC.3C00577
  • Kaur, L., & Singh, I. (2020). Chitosan-catechol conjugates—A novel class of bioadhesive polymers: A critical review. In Progress in adhesion and adhesives (Vol. 5, pp. 51–67). https://doi.org/10.1002/9781119749882.CH3
  • Kim, K. J., Hwang, M. J., Shim, W. G., Youn, Y. N., & Yoon, S. Do. (2024). Sustained drug release behavior of captopril-incorporated chitosan/carboxymethyl cellulose biomaterials for antihypertensive therapy. International Journal of Biological Macromolecules, 255. https://doi.org/10.1016/j.ijbiomac.2023.128087
  • Koirala, S., Nepal, P., Ghimire, G., Basnet, R., Rawat, I., Dahal, A., Pandey, J., & Parajuli-Baral, K. (2021). Formulation and evaluation of mucoadhesive buccal tablets of aceclofenac. Heliyon, 7(3). https://doi.org/10.1016/j.heliyon.2021.e06439
  • Kraisit, P., Limmatvapirat, S., Luangtana-Anan, M., & Sriamornsak, P. (2018). Buccal administration of mucoadhesive blend films saturated with propranolol-loaded nanoparticles. Asian Journal of Pharmaceutical Sciences, 13(1), 34–43. https://doi.org/10.1016/j.ajps.2017.07.006
  • Krishnasamy, N., & Ramadoss, R. (2025). Functional evaluation of Desmostachya bipinnata-enhanced silver nanoparticles in mucoadhesive patches for enhanced oral drug delivery and tissue regeneration. Next Materials, 8, 100821. https://doi.org/10.1016/J.NXMATE.2025.100821
  • Kulkarni, U., Mahalingam, R., Pather, I., Li, X., & Jasti, B. (2010). Porcine buccal mucosa as in vitro model: Effect of biological and experimental variables. Journal of Pharmaceutical Sciences, 99(3), 1265–1277. https://doi.org/10.1002/jps.21907
  • Kumar, R., Lal, N., Rahat, R., Gaur, P. K., Gupta, S., & Aashmeen, S. (2025). Therapeutic potential and formulation considerations of orally disintegrating films in acute disorders. Discover Pharmaceutical Sciences, 1(1). https://doi.org/10.1007/S44395-025-00033-1
  • Kurcubic, I., Cvijic, S., Filipcev, B., Ignjatovic, J., Ibric, S., & Djuris, J. (2020). Development of propranolol hydrochloride bilayer mucoadhesive buccal tablets supported by in silico physiologically-based modeling. Reactive and Functional Polymers, 151. https://doi.org/10.1016/j.reactfunctpolym.2020.104587
  • Kurćubić, I., Vajić, U. J., Cvijić, S., Crevar-Sakač, M., Bogavac-Stanojević, N., Miloradović, Z., Mihajlović-Stanojević, N., Ivanov, M., Karanović, D., Jovović, Đ., & Djuriš, J. (2021). Mucoadhesive buccal tablets with propranolol hydrochloride: Formulation development and in vivo performances in experimental essential hypertension. International Journal of Pharmaceutics, 610. https://doi.org/10.1016/j.ijpharm.2021.121266
  • Kutlu, N. O., Dogrul, M., Yakinci, C., & Soylu, H. (2003). Buccal midazolam for treatment of prolonged seizures in children. Brain and Development, 25(4), 275–278. https://doi.org/10.1016/S0387-7604(02)00230-9
  • Laffleur, F., & Egeling, M. (2020). Evaluation of cellulose-based patches for oral mucosal impairment. Journal of Drug Delivery Science and Technology, 58. https://doi.org/10.1016/j.jddst.2020.101839
  • Laitinen, J., Valkama, E., Valtari, A., Toropainen, E., Koskela, A., Kolehmainen, I., Puranen, J., del Amo, E. M., Vellonen, K. S., Subrizi, A., & Urtti, A. (2025). Rapid elimination of suprachoroidally injected small molecule drugs into the systemic blood circulation. European Journal of Pharmaceutical Sciences, 215. https://doi.org/10.1016/j.ejps.2025.107349
  • Lindner, S., Keim, S., Haddadzadegan, S., Fernandez Romero, O., Zöller, K., Stern, G., Cesi, I., Kafedjiiski, K., & Bernkop-Schnürch, A. (2025). Strategies to improve the lipophilicity of hydrophilic macromolecular drugs. Advanced Healthcare Materials. https://doi.org/10.1002/ADHM.202503721
  • Liu, S., Jin, X., Ge, Y., Dong, J., Liu, X., Pei, X., Wang, P., Wang, B., Chang, Y., & Yu, X. A. (2025). Advances in brain-targeted delivery strategies and natural product-mediated enhancement of blood–brain barrier permeability. Journal of Nanobiotechnology, 23(1). https://doi.org/10.1186/S12951-025-03415-W
  • Łysik, D., Niewęgłowska, J., & Mystkowska, J. (2025). From salivary dysfunction to prosthetic challenges in xerostomia and denture retention with oral gels. Materials, 18(13), 3141. https://doi.org/10.3390/ma18133141
  • Maher, S., & Brayden, D. J. (2021). Formulation strategies to improve the efficacy of intestinal permeation enhancers. Advanced Drug Delivery Reviews, 177. https://doi.org/10.1016/j.addr.2021.113925
  • Malhotra, S., Lijnse, T., Cearbhaill, E. O., & Brayden, D. J. (2025). Devices to overcome the buccal mucosal barrier to administer therapeutic peptides. Advanced Drug Delivery Reviews, 220. https://doi.org/10.1016/j.addr.2025.115572
  • Mane, P. P., Bushetti, S. S., & Keshavshetti, G. G. (2014). Development and in vitro evaluation of mucoadhesive buccal films of nebivolol. Indian Journal of Pharmaceutical Sciences, 76(2), 166. https://pmc.ncbi.nlm.nih.gov/articles/PMC4023287/
  • Maniruzzaman, M., Boateng, J. S., Snowden, M. J., & Douroumis, D. (2012). A review of hot-melt extrusion: Process technology to pharmaceutical products. ISRN Pharmaceutics, 2012, 1–9. https://doi.org/10.5402/2012/436763
  • Manna, S., Dhanalakshmi, D., Bhowmik, M., Jana, Sougata, & Jana, Subrata. (2022). Cellulose derivative-based bioadhesive blend patch for transdermal drug delivery. Frontiers in Materials, 9.
  • Marathe, D., Bhuvanashree, V. S., Mehta, C. H., Ashwini, T., & Nayak, U. Y. (2024). Low-frequency sonophoresis: A promising strategy for enhanced transdermal delivery. Advances in Pharmacological and Pharmaceutical Sciences, 2024. https://doi.org/10.1155/2024/1247450
  • Marwah, H., Garg, T., Goyal, A. K., & Rath, G. (2016). Permeation enhancer strategies in transdermal drug delivery. Drug Delivery, 23(2), 564–578. https://doi.org/10.3109/10717544.2014.935532
  • Mehta, M., Bui, T. A., Yang, X., Aksoy, Y., Goldys, E. M., & Deng, W. (2023). Lipid-based nanoparticles for drug/gene delivery: An overview of the production techniques and difficulties encountered in their industrial development. ACS Materials Au, 3(6), 600–619. https://doi.org/10.1021/ACSMATERIALSAU.3C00032
  • Milionis, A., Tripathy, A., Donati, M., Sharma, C. S., Pan, F., Maniura-Weber, K., Ren, Q., & Poulikakos, D. (2020). Water-based scalable methods for self-cleaning antibacterial ZnO-nanostructured surfaces. Industrial and Engineering Chemistry Research, 59(32), 14323–14333. https://doi.org/10.1021/acs.iecr.0c01998
  • Morales, J. O., & McConville, J. T. (2011). Manufacture and characterization of mucoadhesive buccal films. European Journal of Pharmaceutics and Biopharmaceutics, 77(2), 187–199. https://doi.org/10.1016/J.EJPB.2010.11.023
  • Moreno-Cabañas, A., Morales-Palomo, F., Alvarez-Jimenez, L., Mora-Gonzalez, D., Ortega, J. F., & Mora-Rodriguez, R. (2023). Metformin and exercise effects on postprandial insulin sensitivity and glucose kinetics in pre-diabetic and diabetic adults. American Journal of Physiology - Endocrinology and Metabolism, 325(4), E310–E324. https://doi.org/10.1152/ajpendo.00118.2023
  • Nair, A. B., Kumria, R., Harsha, S., Attimarad, M., Al-Dhubiab, B. E., & Alhaider, I. A. (2013). In vitro techniques to evaluate buccal films. Journal of Controlled Release, 166(1), 10–21. https://doi.org/10.1016/j.jconrel.2012.11.019
  • Nakipoglu, M., Tezcaner, A., Contag, C. H., Annabi, N., & Ashammakhi, N. (2023). Bioadhesives with antimicrobial properties. Advanced Materials, 35(49). https://doi.org/10.1002/ADMA.202300840
  • Narendra, C., Srinath, M. S., & Prakash Rao, B. (2005). Development of three layered buccal compact containing metoprolol tartrate by statistical optimization technique. International Journal of Pharmaceutics, 304(1–2), 102–114. https://doi.org/10.1016/j.ijpharm.2005.07.021
  • Nayak, A. K., Dey, S., Pal, K., & Banerjee, I. (2019). Iontophoretic drug delivery systems. In Bioelectronics and medical devices: From materials to devices – fabrication, applications and reliability (pp. 393–420). https://doi.org/10.1016/B978-0-08-102420-1.00022-4
  • Nayak, G., & Nayak, U. Y. (2025). Hot melt extrusion technology in taste masking. AAPS PharmSciTech, 26(7). https://doi.org/10.1208/S12249-025-03174-9
  • Nesseem, D. I., Eid, S. F., & El-Houseny, S. S. (2011). Development of novel transdermal self-adhesive films for tenoxicam, an anti-inflammatory drug. Life Sciences, 89(13–14), 430–438. https://doi.org/10.1016/j.lfs.2011.06.026
  • Nieuwlaat, R., Wilczynski, N., Navarro, T., Hobson, N., Jeffery, R., Keepanasseril, A., Agoritsas, T., Mistry, N., Iorio, A., Jack, S., Sivaramalingam, B., Iserman, E., Mustafa, R. A., Jedraszewski, D., Cotoi, C., & Haynes, R. B. (2014). Interventions for enhancing medication adherence. The Cochrane Database of Systematic Reviews, 2014(11), CD000011. https://doi.org/10.1002/14651858.CD000011.pub4
  • Nouban, F., & Abazid, M. (2017). Plastic degrading fungi Trichoderma viride and Aspergillus nomius isolated from local landfill soil in Medan. IOP Conference Series: Earth and Environmental Science, 8(February), 68–74.
  • Nourazarain, A., & Vaziri, Y. (2025). Nutrigenomics meets multi-omics: Integrating genetic, metabolic, and microbiome data for personalized nutrition strategies. Genes & Nutrition, 20(1). https://doi.org/10.1186/s12263-025-00790-9
  • Packham, D. (2003). The mechanical theory of adhesion. In Handbook of adhesive technology (Rev. & expanded ed.). https://doi.org/10.1201/9780203912225.CH4
  • Parhi, R. (2019). Chitin and chitosan in drug delivery. In Chitin and chitosan in drug delivery (pp. 175–239). https://doi.org/10.1007/978-3-030-16581-9_6
  • Patel, P., Dave, A., Vasava, A., & Patel, P. (2015). Formulation and characterization of sustained release dosage form of moisture sensitive drug. International Journal of Pharmaceutical Investigation, 5(2), 92. https://doi.org/10.4103/2230-973x.153385
  • Patel, P., Hanini, A., Shah, A., Patel, D., Patel, S., Bhatt, P., & Pathak, Y. V. (2019). Surface modification of nanoparticles for targeted drug delivery. In Surface modification of nanoparticles for targeted drug delivery (pp. 19–31). https://doi.org/10.1007/978-3-030-06115-9_2
  • Pavlović, N., Goločorbin-Kon, S., Danić, M., Stanimirov, B., Al-Salami, H., Stankov, K., & Mikov, M. (2018). Bile acids and their derivatives as potential modifiers of drug release and pharmacokinetic profiles. Frontiers in Pharmacology, 9(Nov).
  • Preeti, Sambhakar, S., Malik, R., Bhatia, S., Harrasi, A. Al, Saharan, R., Aggarwal, G., Kumar, S., Sehrawat, R., & Rani, C. (2024). Lipid horizons: Recent advances and future prospects in LBDDS for oral administration of antihypertensive agents. International Journal of Hypertension, 2024. https://doi.org/10.1155/2024/2430147
  • Priya, S., Desai, V. M., & Singhvi, G. (2023). Surface modification of lipid-based nanocarriers: A potential approach to enhance targeted drug delivery. ACS Omega, 8(1), 74–86. https://doi.org/10.1021/ACSOMEGA.2C05976
  • Rashid, T., Martin, U., Clarke, H., Waller, D., Renwick, A., & George, C. (1995). Factors affecting the absolute bioavailability of nifedipine. British Journal of Clinical Pharmacology, 40(1), 51–58. https://doi.org/10.1111/J.1365-2125.1995.TB04534.X
  • Remuñán-López, C., Portero, A., Vila-Jato, J. L., & Alonso, M. J. (1998). Design and evaluation of chitosan/ethylcellulose mucoadhesive bilayered devices for buccal drug delivery. Journal of Controlled Release, 55(2–3), 143–152. https://doi.org/10.1016/S0168-3659(98)00044-3
  • Rohani Shirvan, A., Hemmatinejad, N., Bahrami, S. H., & Bashari, A. (2021). Fabrication of multifunctional mucoadhesive buccal patch for drug delivery applications. Journal of Biomedical Materials Research Part A, 109(12), 2640–2656. https://doi.org/10.1002/jbm.a.37257
  • Rothlin, R. P., Pelorosso, F. G., Duarte, M., Nicolosi, L., Ignacio, F. C., Salgado, M. V., & Vetulli, H. (2023). Telmisartan and losartan: The marked differences between their chemical and pharmacological properties may explain the difference in therapeutic efficacy in hospitalized patients with COVID-19. Pharmacology Research and Perspectives, 11(2). https://doi.org/10.1002/PRP2.1083
  • Ryu, J. M., Chung, S. J., Lee, M. H., Kim, C. K., & Shim, C. K. (1999). Increased bioavailability of propranolol in rats by retaining thermally gelling liquid suppositories in the rectum. Journal of Controlled Release, 59(2), 163–172. https://doi.org/10.1016/S0168-3659(98)00189-8
  • Salamat-Miller, N., Chittchang, M., & Johnston, T. P. (2005). The use of mucoadhesive polymers in buccal drug delivery. Advanced Drug Delivery Reviews, 57(11), 1666–1691. https://doi.org/10.1016/j.addr.2005.07.003
  • Salim, H., & Jones, A. M. (2022). Angiotensin II receptor blockers (ARBs) and manufacturing contamination: A retrospective national register study into suspected associated adverse drug reactions. British Journal of Clinical Pharmacology, 88(11), 4812–4827. https://doi.org/10.1111/BCP.15411
  • Sanopoulou, M., & Papadokostaki, K. G. (2017). Controlled drug release systems: Mechanisms and kinetics. In Biomedical membranes and (bio)artificial organs (pp. 1–33). https://doi.org/10.1142/9789813223974_0001
  • Scholz, O. A., Wolff, A., Schumacher, A., Giannola, L. I., Campisi, G., Ciach, T., & Velten, T. (2008). Drug delivery from the oral cavity: Focus on a novel mechatronic delivery device. Drug Discovery Today, 13(5–6), 247–253. https://doi.org/10.1016/j.drudis.2007.10.018
  • Semalty, M., Semalty, A., & Kumar, G. (2008). Formulation and characterization of mucoadhesive buccal films of glipizide. Indian Journal of Pharmaceutical Sciences, 70(1), 43. https://doi.org/10.4103/0250-474X.40330
  • Serra, L., Doménech, J., & Peppas, N. A. (2008). Engineering design and molecular dynamics of mucoadhesive drug delivery systems as targeting agents. European Journal of Pharmaceutics and Biopharmaceutics, 71(3), 519. https://doi.org/10.1016/J.EJPB.2008.09.022
  • Shaik, B., Gupta, R., Louis, B., & Agrawal, V. K. (2015). Prediction of permeability of drug-like compounds across polydimethylsiloxane membranes by machine learning methods. Journal of Pharmaceutical Investigation, 45(5), 461–473. https://doi.org/10.1007/s40005-015-0194-z
  • Shaikh, R., Raj Singh, T., Garland, M., Woolfson, A., & Donnelly, R. (2011). Mucoadhesive drug delivery systems. Journal of Pharmacy and Bioallied Sciences, 3(1), 89. https://doi.org/10.4103/0975-7406.76478
  • Shatabayeva, E. O., Kaldybekov, D. B., Ulmanova, L., Zhaisanbayeva, B. A., Mun, E. A., Kenessova, Z. A., Kudaibergenov, S. E., & Khutoryanskiy, V. V. (2024). Enhancing mucoadhesive properties of gelatin through chemical modification with unsaturated anhydrides. Biomacromolecules, 25(3), 1612–1628. https://doi.org/10.1021/ACS.BIOMAC.3C01183
  • Shipp, L., Liu, F., Kerai-Varsani, L., & Okwuosa, T. C. (2022). Buccal films: A review of therapeutic opportunities, formulations & relevant evaluation approaches. Journal of Controlled Release, 352, 1071–1092. https://doi.org/10.1016/j.jconrel.2022.10.058
  • Simon, N., & von Fabeck, K. (2025). Are plasma drug concentrations still necessary? Rethinking the pharmacokinetic link in dose–response relationships. Frontiers in Pharmacology, 16, 1660323. https://doi.org/10.3389/fphar.2025.1660323
  • Sirolli, S., Guarnera, D., Ricotti, L., & Cafarelli, A. (2024). Triggerable patches for medical applications. Advanced Materials, 36(35). https://doi.org/10.1002/adma.202310110
  • Smart, J. D. (2005). The basics and underlying mechanisms of mucoadhesion. Advanced Drug Delivery Reviews, 57(11), 1556–1568. https://doi.org/10.1016/J.ADDR.2005.07.001
  • Solanki, V. R., & Parmar, V. K. (2025). Recent advances in development of buccal formulations: From small to macromolecules. AAPS PharmSciTech, 26(5). https://doi.org/10.1208/s12249-025-03154-z
  • Southward, J., Liu, F., Aspinall, S. R., & Okwuosa, T. C. (2025). Exploring the potential of mucoadhesive buccal films in geriatric medicine. Drug Development and Industrial Pharmacy. https://doi.org/10.1080/03639045.2025.2467329
  • Stanisz, B. (2003). Evaluation of stability of enalapril maleate in solid phase. Journal of Pharmaceutical and Biomedical Analysis, 31(2), 375–380. https://doi.org/10.1016/S0731-7085(02)00325-4
  • Stenzel, M. H. (2021). The Trojan horse goes wild: The effect of drug loading on the behavior of nanoparticles. Angewandte Chemie International Edition, 60(5), 2202–2206. https://doi.org/10.1002/ANIE.202010934
  • Stillhart, C., Vučićević, K., Augustijns, P., Basit, A. W., Batchelor, H., Flanagan, T. R., Gesquiere, I., Greupink, R., Keszthelyi, D., Koskinen, M., Madla, C. M., Matthys, C., Miljuš, G., Mooij, M. G., Parrott, N., Ungell, A. L., de Wildt, S. N., Orlu, M., Klein, S., & Müllertz, A. (2020). Impact of gastrointestinal physiology on drug absorption in special populations—An UNGAP review. European Journal of Pharmaceutical Sciences, 147, 105280. https://doi.org/10.1016/j.ejps.2020.105280
  • Sudarjat, H., Qin, C., Ingabire, D., Moothedathu Raynold, A. A., Pangeni, R., Pearcy, A., Meng, T., Zhao, L., Arriaga, M., Chow, W. N., Puetzer, J. L., Lu, X., Moeller, F. G., Halquist, M. S., O’Keeffe, C., Banks, M. L., & Xu, Q. (2025). Janus LAAM-loaded electrospun fibrous buccal films for treating opioid use disorder. Biomaterials, 317. https://doi.org/10.1016/j.biomaterials.2024.123041
  • Sudhakar, Y., Kuotsu, K., & Bandyopadhyay, A. K. (2006). Buccal bioadhesive drug delivery: A promising option for orally less efficient drugs. Journal of Controlled Release, 114(1), 15–40. https://doi.org/10.1016/j.jconrel.2006.04.012
  • Swarup, P., & Agrawal, G. P. (2021). Solid dispersion: A mechanistic and realistic approach on antihypertensive drug as a drug carrier system. Assay and Drug Development Technologies, 19(5), 282–289. https://doi.org/10.1089/ADT.2020.1055
  • Szilágyi, B. Á., Gyarmati, B., Horvát, G., Laki, Á., Budai-Szűcs, M., Csányi, E., Sandri, G., Bonferoni, M. C., & Szilágyi, A. (2017). The effect of thiol content on the gelation and mucoadhesion of thiolated poly(aspartic acid). Polymer International, 66(11), 1538–1545. https://doi.org/10.1002/PI.5411
  • Taddei, S., Tsabedze, N., & Tan, R. S. (2024). β-Blockers are not all the same: Pharmacologic similarities and differences, potential combinations and clinical implications. Current Medical Research and Opinion, 40(Suppl. 1), 15–23. https://doi.org/10.1080/03007995.2024.2318058
  • Telange, D. R., Bhaktani, N. M., Hemke, A. T., Pethe, A. M., Agrawal, S. S., Rarokar, N. R., & Jain, S. P. (2023). Development and characterization of pentaerythritol–Eudragit RS100 co-processed excipients as solid dispersion carriers for enhanced aqueous solubility, in vitro dissolution, and ex vivo permeation of atorvastatin. ACS Omega, 8(28), 25195–25208. https://doi.org/10.1021/ACSOMEGA.3C02280
  • Thakkar, H. P., Vasava, D., Patel, A. A., & Dhande, R. D. (2020). Formulation and evaluation of liquisolid compacts of itraconazole to enhance its oral bioavailability. Therapeutic Delivery, 11(2), 83–96. https://doi.org/10.4155/TDE-2019-0050
  • Tian, Y., Lin, J., Jing, H., Wang, Q., Wu, Z., & Duan, Y. (2023). Recent progress in orodispersible films-mediated therapeutic applications: A review. MedComm – Biomaterials and Applications, 2(2). https://doi.org/10.1002/MBA2.34
  • Tirumkudulu, M. S., & Punati, V. S. (2022). Solventborne polymer coatings: Drying, film formation, stress evolution, and failure. Langmuir, 38(8), 2409–2414. https://doi.org/10.1021/ACS.LANGMUIR.1C03124
  • Turgeon, R. D., Althouse, A. D., Cohen, J. B., Enache, B., Hogenesch, J. B., Johansen, M. E., Mehta, R., Meyerowitz-Katz, G., Ziaeian, B., & Hiremath, S. (2021). Lowering nighttime blood pressure with bedtime dosing of antihypertensive medications: Controversies in hypertension—Con side of the argument. Hypertension, 78(3), 871–878. https://doi.org/10.1161/HYPERTENSIONAHA.121.16501
  • Vaidya, A., & Mitragotri, S. (2020). Ionic liquid-mediated delivery of insulin to buccal mucosa. Journal of Controlled Release, 327, 26–34. https://doi.org/10.1016/j.jconrel.2020.07.037
  • Vigani, B., Rossi, S., Sandri, G., Bonferoni, M. C., & Caramella, C. M. (2023). Mucoadhesive polymers in substance-based medical devices: Functional ingredients or what else? Frontiers in Drug Safety and Regulation, 3. https://doi.org/10.3389/FDSFR.2023.1227763/FULL
  • Webb, S. J. (2013). Supramolecular approaches to combining membrane transport with adhesion. Accounts of Chemical Research, 46(12), 2878–2887. https://doi.org/10.1021/AR400032C
  • Whelton, P. K., Carey, R. M., Aronow, W. S., Casey, D. E., Collins, K. J., Himmelfarb, C. D., DePalma, S. M., Gidding, S., Jamerson, K. A., Jones, D. W., MacLaughlin, E. J., Muntner, P., Ovbiagele, B., Smith, S. C., Spencer, C. C., Stafford, R. S., Taler, S. J., Thomas, R. J., Williams, K. A., … Hundley, J. (2018). 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension, 71(6), E13–E115. https://doi.org/10.1161/HYP.0000000000000065
  • Yu, Y. Q., Yang, X., Wu, X. F., & Fan, Y. Bin. (2021). Enhancing permeation of drug molecules across the skin via delivery in nanocarriers: Novel strategies for effective transdermal applications. Frontiers in Bioengineering and Biotechnology, 9. https://doi.org/10.3389/FBIOE.2021.646554/FULL
  • Zafar, S., Rana, S. J., Hamza, M., Hussain, A., Abbas, N., Ghori, M. U., & Arshad, M. S. (2025). Advancements in transdermal drug delivery using microneedles: Technological and material perspective. Discover Pharmaceutical Sciences, 1(1). https://doi.org/10.1007/S44395-025-00005-5
  • Zaman, M., Saeed, S., Imtiaz Bajwa, R., Shafeeq Ur Rahman, M., Rahman, S. U., Jamshaid, M., Rasool, M. F., Majeed, A., Imran, I., Alqahtani, F., Alshehri, S., AlAsmari, A. F., Ali, N., & Alasmari, M. S. (2024). Correction to: Synthesis and evaluation of thiol-conjugated poloxamer and its pharmaceutical applications (Pharmaceutics, 13(5), 693). Pharmaceutics, 16(5). https://doi.org/10.3390/PHARMACEUTICS16050690
  • Zhang, C., Liu, Y., Li, W., Gao, P., Xiang, D., Ren, X., & Liu, D. (2019). Mucoadhesive buccal film containing ornidazole and dexamethasone for oral ulcers: In vitro and in vivo studies. Pharmaceutical Development and Technology, 24(1), 118–126. https://doi.org/10.1080/10837450.2018.1428814
  • Zhang, Y., Zhang, X., Gao, Y., & Liu, S. (2025). Principles of lipid nanoparticle design for mRNA delivery. BMEMat, 3(1). https://doi.org/10.1002/BMM2.12116
  • Zhou, C., Chen, J., Li, C., Shen, W., Li, X., Shi, Y., Yang, S., Weng, Y., Wu, D., Huang, J., & Zhao, F. (2025). Assessment of compliance status and its determinants among hypertensive patients from county areas in Zhejiang, China: A cross-sectional study. Public Health Nursing, 42(1), 104–112. https://doi.org/10.1111/phn.13466
  • Zhu, Y. F., He, M. Q., Lin, C. S., Ma, W. H., Ai, Y., Wang, J., & Liang, Q. (2026). Multifunctional nanocarrier drug delivery systems: From diverse design to precise biomedical applications. Advanced Healthcare Materials, 15(2). https://doi.org/10.1002/ADHM.202502178
  • Zielińska, M., Zielińska, M., Wilczyńska, M., Rojewska, M., Voelkel, A., & Sandomierski, M. (2025). Optimization of a mucoadhesion testing protocol using a vertical force measurement system for chitosan- and pectin-based lyophilized polymer matrices and enteric-coated capsules. International Journal of Biological Macromolecules, 323. https://doi.org/10.1016/j.ijbiomac.2025.147145