Review of Phytochemicals with Anti-Diabetic Potential: Plant Sources and Mechanism
Abstract
Background: Phytochemicals, the bioactive compounds found in plants, have garnered substantial attention for their potential health benefits. This review delves into the multifaceted therapeutic applications of phytochemicals, particularly in the management of diabetes and its associated complications.
Purpose: The review highlights the intricate tapestry of phytochemical interventions, exploring their diverse roles in addressing various aspects of diabetes care. This article delves into the potential side effects and risks associated with the use of phytochemicals, emphasizing the importance of a comprehensive assessment of their safety profile.
Methods: To accomplish these objectives, literature has been surveyed from PUBMED, MEDLINE, EMBASE, etc. like search engines, for detailed knowledge about phytochemicals in the management of diabetes and its complications.
Result: Various studies have meticulously examined the potential adverse effects and risks intertwined with phytochemicals, underscoring the need for careful consideration in their therapeutic applications.
Conclusion: The review explores the diverse therapeutic applications and uses of anti-diabetic phytochemicals, such as the clinical applications of berberine and the therapeutic potential of Stevia rebaudiana Bertoni extracts. The review highlights the importance of continued research and exploration in this burgeoning field to unlock the full potential of phytochemicals in the management of diabetes and its complications.
- Page Number : 119-133
-
Published Date : 2025-12-20
- Keywords
Phytochemicals, Diabetes management, Therapeutic applications, Flavonoids, Anti-diabetic compounds - DOI Number
10.15415/jptrm.2025.131009 -
Authors
Leena Parte, Vaishali Somani, and Mrunal Ghag Sawant
References
- Algenstaedt, P., Stumpenhagen, A., & Westendorf, J. (2018). The effect of Morinda citrifolia L. fruit juice on the blood sugar level and other serum parameters in patients with diabetes type 2. Evidence‐Based Complementary and Alternative Medicine, 2018(1), 3565427.https://doi.org/10.1155/2018/3565427
- Al-Ishaq, R. K., Abotaleb, M., Kubatka, P., Kajo, K., & Büsselberg, D. (2019). Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules, 9(9), 430. https://doi.org/10.3390/biom9090430
- AlSabagh, A. T., Rao, M. S., & Renno, W. M. (2023). The impact of heat therapy on neuromuscular function and muscle atrophy in diabetic rats. Frontiers in physiology, 13, 1039588.https://doi.org/10.3389/fphys.2022.1039588
- Azhagu Madhavan, S., Ganesan, S., Sripriya, R., & Priyadharshini, R. (2021). A Literature Review of Anti-Diabetic Medicinal Plant Properties (Costus speices). Journal ISSN, 2766, 2276. https://dx.doi.org/10.37871/jbres1231
- Bora, K. (2021). Role of medicinal plants in the management of diabetes mellitus: a review. Journal of pharmaceutical research international. https://doi.org/10.1007/s13205-018-1528-0
- Boston, C., Rosales, J., & Singh, J. (2020). Phytochemical Analysis and Anti-diabetic Potential of Annona muricata L., Persea americana Mill. and Montrichardia arborescens L. Schott Utilized by the Residents of Pakuri (St. Cuthbert’s Mission) in Guyana. Journal of Complementary and Alternative Medical Research, 8(4), 1-12.https://doi.org/10.9734/jocamr/2019/v8i430130
- Caro-Ordieres, T., Marín-Royo, G., Opazo-Ríos, L., Jiménez-Castilla, L., Moreno, J. A., Gómez-Guerrero, C., & Egido, J. (2020). The coming age of flavonoids in the treatment of diabetic complications. Journal of clinical medicine, 9(2), 346.https://doi.org/10.3390/jcm9020346
- Chang, X. Q., & Yue, R. S. (2025). Therapeutic potential of luteolin for diabetes mellitus and its complications. Chinese Journal of Integrative Medicine, 31(6), 566-576.https://doi.org/10.1007/s11655-024-3917-z
- Chugh, V., Mishra, V., Dwivedi, S. V., & Sharma, K. D. (2019). Purslane (Portulaca oleracea L.): An underutilized wonder plant with potential pharmacological value. The pharma innovation journal, 8(6), 236-246.
- Di Meo, F., Filosa, S., Madonna, M., Giello, G., Di Pardo, A., Maglione, V., ... & Crispi, S. (2019). Curcumin C3 complex®/Bioperine® has antineoplastic activity in mesothelioma: An in vitro and in vivo analysis. Journal of Experimental & Clinical Cancer Research, 38(1), 360.https://doi.org/10.1186/s13046-019-1368-8
- Gowtham, K., Saruniyadevi, M., Thenmozhi, M., Gopiesh, K. V., & Jayanthi, M. (2022). Bio characterization via FTIR and GCMS analysis of Cucurbita variety (yellow and white pumpkin).https://doi.org/10.18006/2022.10(5).1076.1092
- Hansen, T. V., Vik, A., & Serhan, C. N. (2019). The protectin family of specialized pro-resolving mediators: potent immunoresolvents enabling innovative approaches to target obesity and diabetes. Frontiers in pharmacology, 9, 1582.https://doi.org/10.3389/fphar.2018.01582
- Imenshahidi, M., & Hosseinzadeh, H. (2019). Berberine and barberry (Berberis vulgaris): a clinical review. Phytotherapy Research, 33(3), 504-523.https://doi.org/10.1002/ptr.6252
- Janssens, S., Jonkers, R. A., Groen, A. K., Nicolay, K., Van Loon, L. J., & Prompers, J. J. (2015). Effects of acute exercise on lipid content and dietary lipid uptake in liver and skeletal muscle of lean and diabetic rats. American Journal of Physiology-Endocrinology and Metabolism, 309(10), E874-E883.https://doi.org/10.1152/ajpendo.00292.2015
- Jia, Y., Wu, C., Kim, Y. S., Yang, S. O., Kim, Y., Kim, J. S., ... & Lee, S. J. (2020). A dietary anthocyanin cyanidin-3-O-glucoside binds to PPARs to regulate glucose metabolism and insulin sensitivity in mice. Communications Biology, 3(1), 514.https://doi.org/10.1038/s42003-020-01231-6
- Jubaidi, F. F., Zainalabidin, S., Taib, I. S., Hamid, Z. A., & Budin, S. B. (2021). The potential role of flavonoids in ameliorating diabetic cardiomyopathy via alleviation of cardiac oxidative stress, inflammation and apoptosis. International journal of molecular sciences, 22(10), 5094.https://doi.org/10.3390/ijms22105094
- Kausar, M. A., Anwar, S., Eltayb, W. A., Kuddus, M., Khatoon, F., El-Arabey, A. A., ... & Abdalla, M. (2022). MD simulation studies for selective phytochemicals as potential inhibitors against major biological targets of diabetic nephropathy. Molecules, 27(15), 4980.https://doi.org/10.3390/molecules27154980
- Khazeei Tabari, M. A., Mirjalili, R., Khoshhal, H., Shokouh, E., Khandan, M., Hasheminasabgorji, E., ... & Bagheri, A. (2022). Nature Against Diabetic Retinopathy: A Review on Antiangiogenic, Antioxidant, and Anti‐Inflammatory Phytochemicals. Evidence‐Based Complementary and Alternative Medicine, 2022(1), 4708527.https://doi.org/10.1155/2022/4708527
- Kołodziejski, D., Piekarska, A., Hanschen, F. S., Pilipczuk, T., Tietz, F., Kusznierewicz, B., & Bartoszek, A. (2019). Relationship between conversion rate of glucosinolates to isothiocyanates/indoles and genotoxicity of individual parts of Brassica vegetables. European Food Research and Technology, 245(2), 383-400.https://doi.org/10.1007/s00217-018-3170-9
- Majnooni, M. B., Fakhri, S., Shokoohinia, Y., Kiyani, N., Stage, K., Mohammadi, P., ... & Echeverría, J. (2020). Phytochemicals: potential therapeutic interventions against coronavirus-associated lung injury. Frontiers in Pharmacology, 11, 588467.https://doi.org/10.3389/fphar.2020.588467
- Marton, L. T., Pescinini-e-Salzedas, L. M., Camargo, M. E. C., Barbalho, S. M., Haber, J. F. D. S., Sinatora, R. V., ... & Cincotto dos Santos Bueno, P. (2021). The effects of curcumin on diabetes mellitus: a systematic review. Frontiers in endocrinology, 12, 669448.https://doi.org/10.3389/fendo.2021.669448
- Matos, A. L., Bruno, D. F., Ambrósio, A. F., & Santos, P. F. (2020). The benefits of flavonoids in diabetic retinopathy. Nutrients, 12(10), 3169.https://doi.org/10.3390/nu12103169
- Monica, S. J., Jemima, D., Daniel, E. L., Selvaraju, P., Preetha, M. A., & Rajendran, E. G. M. G. (2025). Phytochemicals as Anticancer Agents: Investigating Molecular Pathways from Preclinical Research to Clinical Relevance. Current Research in Nutrition and Food Science Journal, 13(Special Issue Phytonutrients June 2025).https://dx.doi.org/10.12944/CRNFSJ.13.Special-Issue-July.09
- Neveu, V., Perez-Jiménez, J., Vos, F., Crespy, V., du Chaffaut, L., Mennen, L., ... & Scalbert, A. (2010). Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. Database, 2010. https://doi.org/10.1093/database/bap024
- Noguchi, H., Ueda, M., Nakai, Y., Iwanaga, Y., Okitsu, T., Nagata, H., ... & Matsumoto, S. (2006). Modified two-layer preservation method (M-Kyoto/PFC) improves islet yields in islet isolation. American journal of transplantation, 6(3), 496-504. https://doi.org/10.1111/j.1600-6143.2006.01223.x
- Panda, S. R., Meher, A., Prusty, G., Behera, S., & Prasad, B. R. (2025). Antibacterial properties and therapeutic potential of few medicinal plants: current insights and challenges. Discover Plants, 2(1), 21.https://doi.org/10.1007/s44372-025-00097-4
- Pivari, F., Mingione, A., Brasacchio, C., & Soldati, L. (2019). Curcumin and type 2 diabetes mellitus: prevention and treatment. Nutrients, 11(8), 1837.https://doi.org/10.3390/nu11081837
- Qin, S., Chen, Z., Wen, Y., Yi, Y., Lv, C., Zeng, C., ... & Shi, M. (2022). Phytochemical activators of Nrf2: a review of therapeutic strategies in diabetes: Phytochemical activators of Nrf2. Acta Biochimica et Biophysica Sinica, 55(1), 11.https://doi.org/10.3724/abbs.2022192
- Rashid, F., Javaid, A., Ashfaq, U. A., Sufyan, M., Alshammari, A., Alharbi, M., ... & Khurshid, M. (2022). Integrating pharmacological and computational approaches for the phytochemical analysis of Syzygium cumini and its anti-diabetic potential. Molecules, 27(17), 5734.https://doi.org/10.3390/molecules27175734
- Rauf, A., Almasoud, N., Ibrahim, M., Alomar, T. S., Khalil, A. A., Khursheed, T., ... & Sharma, R. (2024). Anti-diabetic, anti-cholinesterase, and anti-inflammatory potential of plant derived extracts and column semi-purified fractions of Ficus benghalensis. Frontiers in Bioscience-Landmark, 29(5), 183.https://doi.org/10.31083/j.fbl2905183
- Root, S. E., Jackson, N. E., Savagatrup, S., Arya, G., & Lipomi, D. J. (2017). Modelling the morphology and thermomechanical behaviour of low-bandgap conjugated polymers and bulk heterojunction films. Energy & Environmental Science, 10(2), 558-569.https://doi.org/10.1039/c6ee03456j
- Ruiz-Ruiz, J. C., Moguel-Ordoñez, Y. B., & Segura-Campos, M. R. (2017). Biological activity of Stevia rebaudiana Bertoni and their relationship to health. Critical reviews in food science and nutrition, 57(12), 2680-2690.https://doi.org/10.1080/10408398.2015.1072083
- Salehi, B., Ata, A., V. Anil Kumar, N., Sharopov, F., Ramirez-Alarcon, K., Ruiz-Ortega, A., ... & Sharifi-Rad, J. (2019). Antidiabetic potential of medicinal plants and their active components. Biomolecules, 9(10), 551.https://doi.org/10.3390/biom9100551
- Sayem, A. S. M., Arya, A., Karimian, H., Krishnasamy, N., Ashok Hasamnis, A., & Hossain, C. F. (2018). Action of phytochemicals on insulin signaling pathways accelerating glucose transporter (GLUT4) protein translocation. Molecules, 23(2), 258.https://doi.org/10.3390/molecules23020258
- Shahid, M., Azfaralariff, A., Govender, N., Zubair, M., Najm, A. A., Khan, N. H., ... & Fazry, S. (2022). Stevia rebaudiana Bertoni leaf extract phytochemicals inhibit the Type 2 Diabetes mellitus receptor targets.https://doi.org/10.21203/rs.3.rs-1870035/v1
- Shanak, S., Saad, B., & Zaid, H. (2019). Metabolic and epigenetic action mechanisms of antidiabetic medicinal plants. Evidence‐Based Complementary and Alternative Medicine, 2019(1), 3583067.https://doi.org/10.1155/2019/3583067
- Skendi, A., Irakli, M., Chatzopoulou, P., & Papageorgiou, M. (2019). Aromatic plants of Lamiaceae family in a traditional bread recipe: Effects on quality and phytochemical content. Journal of food biochemistry, 43(11), e13020.https://doi.org/10.1111/jfbc.13020
- Soltani, S., Boozari, M., Cicero, A. F., Jamialahmadi, T., & Sahebkar, A. (2021). Effects of phytochemicals on macrophage cholesterol efflux capacity: Impact on atherosclerosis. Phytotherapy Research, 35(6), 2854-2878.https://doi.org/10.1002/ptr.6991
- Tumusiime Mugisha, J. Phytochemical Interventions in Diabetes Management: Mechanisms, Efficacy, and Safety Concerns.https://doi.org/10.59298/RIJRMS/2025/43612
- Uti, D. E., Atangwho, I. J., Alum, E. U., Egba, S. I., Ugwu, O. P. C., & Ikechukwu, G. C. (2025). Natural antidiabetic agents: current evidence and development pathways from medicinal plants to clinical use. Natural Product Communications, 20(3), 1934578X251323393.https://doi.org/10.1177/1934578X251323393
- Wang, C., Gao, P., Xu, J., Liu, S., Tian, W., Liu, J., & Zhou, L. (2022). Natural phytochemicals prevent side effects in BRCA-mutated ovarian cancer and PARP inhibitor treatment. Frontiers in Pharmacology, 13, 1078303.https://doi.org/10.3389/fphar.2022.1078303
- Wu, T., Ma, Z., Zhang, Y., Wu, M., & Cao, H. (2023). Simultaneous quantitative analysis of 11 constituents in Viticis Fructus by HPLC‐HRMS and HPLC‐DAD combined with chemometric methods. Phytochemical Analysis, 34(2), 163-174.https://doi.org/10.1002/pca.3190
- Xiao, L., Sun, Y., & Tsao, R. (2022). Paradigm shift in phytochemicals research: evolution from antioxidant capacity to anti-inflammatory effect and to roles in gut health and metabolic syndrome. Journal of Agricultural and Food Chemistry, 70(28), 8551-8568. https://doi.org/10.1021/acs.jafc.2c02326
- Yang, W. C. (2014). Botanical, pharmacological, phytochemical, and toxicological aspects of the antidiabetic plant Bidens pilosa L. Evidence‐Based Complementary and Alternative Medicine, 2014(1), 698617.https://doi.org/10.1155/2014/698617
- Zailan, N. F. Z., Sarchio, S. N. E., & Hassan, M. (2022). Evaluation of Phytochemical Composition, Antioxidant and anti-Diabetic Activities of Mitragyna speciosa Methanolic Extract (MSME). Malaysian Journal of Medicine & Health Sciences, 18.https://doi.org/10.47836/mjmhs.18.s21.15
- Zainab, B., Ayaz, Z., Alwahibi, M. S., Khan, S., Rizwana, H., Soliman, D. W., ... & Abbasi, A. M. (2020). In-silico elucidation of Moringa oleifera phytochemicals against diabetes mellitus. Saudi journal of biological sciences, 27(9), 2299-2307.https://doi.org/10.1016/j.sjbs.2020.04.002
- Zanzabil, K. Z., Hossain, M. S., & Hasan, M. K. (2023). Diabetes mellitus management: An extensive review of 37 medicinal plants. Diabetology, 4(2), 186-234.https://doi.org/10.3390/diabetology4020019
- Zhang, Y., Sun, J., Liu, Y., Sun, S., & Wang, K. (2025). Multi-functional dressing with curcumin displays anti-inflammatory, antioxidant, angiogenic, and collagen regeneration effects in diabetic wound healing. Journal of Materials Science, 60(14), 6217-6234.https://doi.org/10.1007/s10853-025-10823-8