Box-Behnken Optimized Olmesartan Sublingual Tablets: A Quality by Design Study

Abstract

Background: Heart failure is a progressive cardiovascular condition associated with high morbidity and mortality. Although Olmesartan, an angiotensin II receptor antagonist, is effective in managing heart failure, its conventional oral route is limited by poor solubility and variable bioavailability.

Purpose: This study aimed to develop a fast-dissolving sublingual tablet of Olmesartan using a Quality by Design (QbD) framework, integrating Box–Behnken Design (BBD) optimization with ex vivo permeation analysis to enhance systemic absorption.

Methods: Three critical formulation variables—Sodium Starch Glycolate (SSG), Crospovidone (CP), and Croscarmellose Sodium (CCS)—were evaluated for their effect on disintegration time (DT) and cumulative drug release (CDR).

Result: The optimized formulation (OOSF-18), containing 9 mg SSG, 9 mg CP, and 6.44 mg CCS, exhibited a DT of 33.33 s and 92.33% CDR, with strong model predictability (adjusted R² = 0.9961 for DT and 0.9806 for CDR). Ex vivo permeation through porcine mucosa reached 89.76% within 10 min, indicating rapid transmucosal delivery potential. Stability studies confirmed formulation robustness over six months.

Conclusion: This combined QbD permeation strategy demonstrates a novel and efficient approach for improving Olmesartan’s bioavailability and offers translational potential for rapid-acting sublingual antihypertensive therapy.

  • Page Number : 93-104
  • Published Date : 2025-12-24
  • Keywords
    Quality by design, Box–Behnken design, Sublingual tablet, Olmesartan, Ex vivo permeation
  • DOI Number
    10.15415/jptrm.2025.131007
  • Authors
    Deepak Joshi, Pawandeep Shukla and Naveen Kumar Choudhary

References

  • Abouhussein, D. M. N., El Nabarawi, M. A., Shalaby, S. H., & El-Bary, A. A. (2021). Sertraline-cyclodextrin complex orodispersible sublingual tablet: Optimization, stability, and pharmacokinetics. Journal of Pharmaceutical Innovation, 16(1). https://doi.org/10.1007/s12247-019-09416-1
  • Ahirrao, S. P., Bhambere, D. S., Ahire, E. D., Dashputre, N. L., Kakad, S. P., & Laddha, U. D. (2023). Formulation and evaluation of Olmesartan medoxomil nanosuspension. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.06.260
  • Alali, A. S., Aldawsari, M. F., Alalaiwe, A., Almutairy, B. K., Al-Shdefat, R., Walbi, I. A., & Fayed, M. H. (2021). Exploitation of design-of-experiment approach for design and optimization of fast-disintegrating tablets for sublingual delivery of sildenafil citrate with enhanced bioavailability using fluid-bed granulation technique. Pharmaceutics, 13(6). https://doi.org/10.3390/pharmaceutics13060870
  • Ali, R., Mehta, P., Monou, P. K., Arshad, M. S., Panteris, E., Rasekh, M., Singh, N., Qutachi, O., Wilson, P., Tzetzis, D., Chang, M. W., Fatouros, D. G., & Ahmad, Z. (2020). Electrospinning/electrospraying coatings for metal microneedles: A design of experiments (DoE) and quality by design (QbD) approach. European Journal of Pharmaceutics and Biopharmaceutics, 156, 20–39. https://doi.org/10.1016/j.ejpb.2020.08.023
  • Al-Madhagi, W., Albarakani, A. A., Alhag, A. K., Saeed, Z. A., Noman, N. M., & Mohamed, K. (2017). Formulation and evaluation of new glimepiride sublingual tablets. Journal of Pharmaceutics, 2017, 1–5. https://doi.org/10.1155/2017/3690473
  • Alyami, H. S., Ibrahim, M. A., Alyami, M. H., Dahmash, E. Z., Almeanazel, O. T., Algahtani, T. S., Alanazi, F., & Alshora, D. H. (2021). Formulation of sublingual promethazine hydrochloride tablets for rapid relief of motion sickness. Saudi Pharmaceutical Journal, 29(5). https://doi.org/10.1016/j.jsps.2021.04.011
  • Amson, H., Lasselin, P., Naegels, B., Bracho, G. F. P., Aubrun, F., & Dziadzko, M. (2021). Usability evaluation of sufentanil sublingual tablet analgesia in patients following enhanced recovery after surgery. Journal of Comparative Effectiveness Research, 10(9). https://doi.org/10.2217/cer-2020-0239
  • Anraku, M., Tabuchi, R., Goto, M., Iohara, D., Mizukai, Y., Maezaki, Y., Michihara, A., Kadowaki, D., Otagiri, M., & Hirayama, F. (2019). Design and evaluation of an extended-release Olmesartan tablet using chitosan/cyclodextrin composites. Pharmaceutics, 11(2), 82. https://doi.org/10.3390/pharmaceutics11020082
  • Ashok Mahajan, Parmar, J., Patel, P., Koradiya, S., & Mehta, F. (2022). Formulation, evaluation and optimization of sublingual tablet of clonidine HCl. International Journal of Life Science and Pharma Research. https://doi.org/10.22376/ijpbs/lpr.2020.10.2.p1-8
  • Atia, N. N., Tawfeek, H. M., Rageh, A. H., El-Zahry, M. R., Abdelfattah, A., & Younis, M. A. (2019). Novel sublingual tablets of atorvastatin calcium/trimetazidine hydrochloride combination: HPTLC quantification, in vitro formulation and characterization. Saudi Pharmaceutical Journal, 27(4). https://doi.org/10.1016/j.jsps.2019.02.001
  • Chordiya, M., Gangurde, H., & Sancheti, V. (2019). Quality by design: A roadmap for quality pharmaceutical products. Journal of Reports in Pharmaceutical Sciences, 8(2), 289. https://doi.org/10.4103/jrptps.jrptps_2_18
  • Choudhary, N. K., & Joshi, D. (2025). Formulation and optimization of Olmesartan sublingual tablets using Box–Behnken design: A QbD and ex vivo study. Journal of Pharmaceutical Innovation, 20(6), 223.
  • Costa, C. P., Cunha, S., Moreira, J. N., Silva, R., Gil-Martins, E., Silva, V., Azevedo, L., Peixoto, A. F., Sousa Lobo, J. M., & Silva, A. C. (2021). QbD optimization of diazepam-loaded nanostructured lipid carriers for nose-to-brain delivery: Toxicological effect of surface charge on human neuronal cells. International Journal of Pharmaceutics, 607, 120933. https://doi.org/10.1016/j.ijpharm.2021.120933
  • Cunha, S., Costa, C. P., Moreira, J. N., Sousa Lobo, J. M., & Silva, A. C. (2020). Using the QbD approach to optimize formulations of lipid nanoparticles and nanoemulsions: A review. Nanomedicine: Nanotechnology, Biology and Medicine, 28, 102206. https://doi.org/10.1016/j.nano.2020.102206
  • Dhawan, S., & Nanda, S. (2023). Implementation of QbD concept for the development of emulsion-based nanotailored gel for improved antiphotoageing potential of silymarin. Journal of Drug Delivery Science and Technology, 81, 104201. https://doi.org/10.1016/j.jddst.2023.104201
  • Dubey, I., Joshi, D., Walvekar, A., Pandey, P. K., & Singh Chouhan, P. (2025). QbD-based optimization of fast-dissolving sublingual tablets of Valsartan. Journal of Pharmaceutical Innovation, 20(2), 75.
  • Gahlawat, N., Verma, R., & Kaushik, D. (2020). Application of D-optimal mixture design for development and optimization of Olmesartan medoxomil loaded SMEDDS. Current Drug Therapy, 15(5), 548–560. https://doi.org/10.2174/1574885515666200212094039
  • Genedy, S., Khames, A., Hussein, A., & Sarhan, H. (2018). Hydralazine HCl rapidly disintegrating sublingual tablets: Simple dosage form of higher bioavailability and enhanced clinical efficacy for rapid control of hypertensive preeclampsia. Drug Design, Development and Therapy, 12. https://doi.org/10.2147/DDDT.S173326
  • González, R., Peña, M. Á., & Torrado, G. (2022). Formulation and evaluation of Olmesartan medoxomil tablets. Compounds, 2(4), 334–352. https://doi.org/10.3390/compounds2040028
  • Gunda, R. K. (2018). Design, development, and in vitro evaluation of sustained-release tablet formulations of Olmesartan medoxomil. MOJ Drug Design Development & Therapy, 2(3). https://doi.org/10.15406/mojddt.2018.02.00043
  • Hasnain, M. S., Ahmed, S. A., Khatoon, A., Afzal, M., Ansari, M. T., Khatoon, S., Tabish, M., Al-Marshad, F. M., & Nayak, A. K. (2021). Pharmaceutical product development: A QbD approach. In Advances and Challenges in Pharmaceutical Technology: Materials, Process Development and Drug Delivery Strategies (pp. 131–146). https://doi.org/10.1016/B978-0-12-820043-8.00017-7
  • Joshi, D., & Choudhary, N. K. (2023). Enhancing sublingual tablet quality through QbD: Current trends and insights. Precision Nanomedicine, 6(3). https://doi.org/10.33218/001c.88223
  • Joshi, D., & Choudhary, N. K. (2024). Implementation of QbD for sublingual antihypertensive drugs. Journal of Pharmaceutical Innovation, 19(3), 20. https://doi.org/10.1007/s12247-024-09832-y
  • Kadry, H., Omar, A., Sherbiny, F., & Zaky, A. (2016). Design and optimization of captopril sublingual tablets: Enhancement of pharmacokinetic parameters in humans. Al-Azhar Journal of Pharmaceutical Sciences, 53(1), 90–107. https://doi.org/10.21608/ajps.2016.6889
  • Kayrak-Talay, D., Dale, S., Wassgren, C., & Litster, J. (2013). Quality by design for wet granulation in pharmaceutical processing: Assessing models for a priori design and scaling. Powder Technology, 240, 7–18. https://doi.org/10.1016/j.powtec.2012.07.013
  • Khan, A. B., Kingsley, T., & Caroline, P. (2017). Sublingual tablets and the benefits of the sublingual route of administration. Journal of Pharmaceutical Research, 16(3). https://doi.org/10.18579/jpcrkc/2017/16/3/118766
  • Lee, J., Kim, A., Yu, K.-S., Chung, J.-Y., Yim, S.-V., & Kim, B.-H. (2015). Pharmacokinetics and bioequivalence of two different 20 mg Olmesartan tablets. Translational and Clinical Pharmacology, 23(2), 49. https://doi.org/10.12793/tcp.2015.23.2.49
  • Mayet-Cruz, L., Rodríguez, J. M., & Jung-Cook, H. (2021). Development of a dissolution test for melatonin sublingual tablets using a factorial experimental design. Farmacia, 69(1). https://doi.org/10.31925/farmacia.2021.1.23
  • Melson, T. I., Boyer, D. L., Minkowitz, H. S., Turan, A., Chiang, Y. K., Evashenk, M. A., & Palmer, P. P. (2014). Sufentanil sublingual tablet system vs. intravenous patient-controlled analgesia with morphine for postoperative pain control. Pain Practice, 14(8). https://doi.org/10.1111/papr.12238
  • Mishra, V., Thakur, S., Patil, A., & Shukla, A. (2018). Quality by design approaches in current pharmaceutical set-up. Expert Opinion on Drug Delivery, 15(8), 737–758. https://doi.org/10.1080/17425247.2018.1504768
  • Mujtaba, A., Kohli, K., Ali, J., & Baboota, S. (2013). Formulation and evaluation of sublingual drug delivery of ondansetron hydrochloride tablets. Advanced Science, Engineering and Medicine, 5(4), 349–354. https://doi.org/10.1166/asem.2013.1263
  • Nasr, A., Gardouh, A., & Ghorab, M. (2016). Novel solid self-nanoemulsifying drug delivery system (S-SNEDDS) for oral delivery of Olmesartan medoxomil: Design, formulation, pharmacokinetics and bioavailability. Pharmaceutics, 8(3), 20. https://doi.org/10.3390/pharmaceutics8030020
  • Nikam, R. S., Borkar, S. P., Jadhav, P. D., Yadav, V. D., & Jadhav, A. V. (2020). Sublingual tablets: An overview. International Journal of Scientific Research in Science and Technology. https://doi.org/10.32628/ijsrst207357
  • Nooli, M., Chella, N., Kulhari, H., Shastri, N. R., & Sistla, R. (2017). Solid lipid nanoparticles for oral delivery of Olmesartan medoxomil: Formulation, optimization and in vivo evaluation. Drug Development and Industrial Pharmacy, 43(4), 611–617. https://doi.org/10.1080/03639045.2016.1275666
  • Pallagi, E., Ambrus, R., Szabó-Révész, P., & Csóka, I. (2015). Adaptation of the QbD concept in early pharmaceutical development of an intranasal nanosized formulation. International Journal of Pharmaceutics, 491(1–2), 384–392. https://doi.org/10.1016/j.ijpharm.2015.06.018
  • Panwar, M. S., Pal, P., & Joshi, D. (2024). Advances in green synthesis of silver nanoparticles: Sustainable approaches and applications. Journal of Drug Delivery and Therapeutics, 14(11), 177–184. https://doi.org/10.22270/jddt.v14i11.6854
  • Patel, J., Dhingani, A., Tilala, J., Raval, M., & Sheth, N. (2014). Formulation and development of self-nanoemulsifying granules of Olmesartan medoxomil for bioavailability enhancement. Particulate Science and Technology, 32(3), 274–290. https://doi.org/10.1080/02726351.2013.855686
  • Pawar, A., Londhe, V. Y., & Bhadale, R. S. (2022). Formulation and characterization of sublingual tablets of Iloperidone prepared by microenvironmental pH regulated approach. Journal of Pharmaceutical Innovation, 17(1). https://doi.org/10.1007/s12247-020-09502-9
  • Prajapati, S. T., Joshi, H. A., & Patel, C. N. (2013). Preparation and characterization of self-microemulsifying drug delivery system of Olmesartan medoxomil for bioavailability improvement. Journal of Pharmaceutics, 2013, 1–9. https://doi.org/10.1155/2013/728425
  • Pramod, K., Tahir, M., Charoo, N., Ansari, S., & Ali, J. (2016). Pharmaceutical product development: A quality by design approach. International Journal of Pharmaceutical Investigation, 6(3), 129. https://doi.org/10.4103/2230-973X.187350
  • Raut, M. B., & Gedam, P. (2020). Overview on sublingual tablets. International Journal of Research in Pharma and Pharmaceutical Sciences, 1(1).
  • Rawas-Qalaji, M., Rachid, O., Mendez, B. A., Losada, A., Simons, F. E. R., & Simons, K. J. (2015). Adrenaline (epinephrine) microcrystal sublingual tablet formulation: Enhanced absorption in a preclinical model. Journal of Pharmacy and Pharmacology, 67(1). https://doi.org/10.1111/jphp.12312
  • Sangshetti, J. N., Deshpande, M., Zaheer, Z., Shinde, D. B., & Arote, R. (2017). Quality by design approach: Regulatory need. Arabian Journal of Chemistry, 10, S3412–S3425. https://doi.org/10.1016/j.arabjc.2014.01.025
  • Shelke, V., & Mutha, S. (2020). Formulation and evaluation of lansoprazole sublingual tablet. Journal of Research in Pharmacy, 24(2). https://doi.org/10.35333/jrp.2020.143
  • Simão, J., Chaudhary, S. A., & Ribeiro, A. J. (2023). Implementation of QbD for development of bilayer tablets. European Journal of Pharmaceutical Sciences, 184, 106412. https://doi.org/10.1016/j.ejps.2023.106412
  • Singh, M. K., Mazumder, R., Padhi, S., & Singh, D. K. (2022). Formulation development and optimization of bioenhanced sublingual tablets of rizatriptan benzoate to combat migraine. Indian Journal of Pharmaceutical Education and Research, 56(2). https://doi.org/10.5530/ijper.56.2s.91
  • Soni, N., Joshi, D., Jain, V., & Pal, P. (2022). A review on applications of bilayer tablet technology for drug combinations. Journal of Drug Delivery and Therapeutics, 12(1), 222–227. https://doi.org/10.22270/jddt.v12i1.5206
  • Than, Y. M., & Titapiwatanakun, V. (2021). Tailoring immediate release FDM 3D printed tablets using a QbD approach. International Journal of Pharmaceutics, 599, 120402. https://doi.org/10.1016/j.ijpharm.2021.120402
  • Verma, H., Pal, P., & Joshi, D. (2022). Formulation, development and evaluation of invasomes loaded gel for fungal treatment. Scholars Academic Journal of Pharmacy, 11(7), 105–108. https://doi.org/10.36347/sajp.2022.v11i07.001
  • Verma, P., & Yadav, K. S. (2023). QbD-enabled and Box–Behnken design-assisted approach for formulation of tranexamic acid loaded stratum corneum lipid liposomes. Journal of Drug Delivery Science and Technology, 86, 104571. https://doi.org/10.1016/j.jddst.2023.104571
  • Won, D. H., Park, H., Ha, E. S., Kim, H. H., Jang, S. W., & Kim, M. S. (2021). Optimization of bilayer tablet manufacturing process for fixed dose combination based on QbD. International Journal of Pharmaceutics, 605, 120838. https://doi.org/10.1016/j.ijpharm.2021.120838
  • Yu, L. X., Amidon, G., Khan, M. A., Hoag, S. W., Polli, J., Raju, G. K., & Woodcock, J. (2014). Understanding pharmaceutical quality by design. AAPS Journal, 16(4), 771–783. https://doi.org/10.1208/s12248-014-9598-3
  • Zagalo, D. M., Silva, B. M. A., Silva, C., Simões, S., & Sousa, J. J. (2022). A QbD approach in pharmaceutical development of lipid-based nanosystems: A systematic review. Journal of Drug Delivery Science and Technology, 70, 103207. https://doi.org/10.1016/j.jddst.2022.103207