The Role of Millets in Diabetes Management: From Bioactive Compounds to Metabolic Health

Abstract

Background: Type 2 diabetes (T2DM) is the most common form of diabetes mellitus (DM), a chronic metabolic disease that affects millions of people worldwide. Millets, especially foxtail and finger millet, have drawn interest as functional foods because of their high amount of bioactive compounds and low glycemic index.

Purpose: This study examines how millets can help manage diabetes by concentrating on their bioactive components, glycemic control, and gut microbiota modification.

Methods: A systematic review of current research was done to highlight the processes via which millets contribute to diabetes control, including their antioxidant, anti-inflammatory, and gut microbiota-modulating activities.

Results: It has been demonstrated that millets, which are high in dietary fiber, polyphenols, and antioxidants, enhance glycemic management, lessen insulin resistance, and lessen oxidative stress. However, there are still issues with few human clinical studies and variation in bioactive chemicals.

Conclusion: Millets have a lot of promise for managing diabetes, but more study is required to create firm dietary recommendations, especially large-scale human trials.

  • Page Number : 65-82
  • Published Date : 2024-11-20
  • Keywords
    Finger millet, Glycemic control, Oxidative stress, Gut microbiota, Functional foods, Diabetes mellitus, Foxtail millet
  • DOI Number
    10.15415/jptrm.2024.122006
  • Authors
    Bipin Singh, Mohd. Sayam, Vishal Kajla, Shalu Kashyap, Ajay Bilandi, and Md. Shamim Ahmad

References

  • Akinola, S. A., Badejo, A. A., Osundahunsi, O. F., & Edema, M. O. (2017). Effect of preprocessing techniques on pearl millet flour and changes in technological properties. International Journal of Food Science & Technology, 52(4), 992–999. https://doi.org/10.1111/ijfs.13366
  • Alam, S., Sarker, M. M., Sultana, T. N., Chowdhury, M. N., Rashid, M. A., Chaity, N. I., ... & Mohamed, I. N. (2022). Antidiabetic phytochemicals from medicinal plants: Prospective candidates for new drug discovery and development. Frontiers in Endocrinology, 13, 800714. https://doi.org/10.3389/fendo.2022.800714
  • Almaski, A., Thondre, S., Lightowler, H., & Coe, S. (2017). Determination of the polyphenol and antioxidant activity of different types and forms of millet. Proceedings of the Nutrition Society, 76(OCE1), E5. https://doi.org/10.1017/S0029665117000055
  • Anderson, J. W., Baird, P., Davis, R. H., Ferreri, S., Knudtson, M., Koraym, A., ... & Williams, C. L. (2009). Health benefits of dietary fiber. Nutrition Reviews, 67(4), 188–205. https://doi.org/10.1111/j.1753-4887.2009.00189.x
  • Anis, M. A., & Sreerama, Y. N. (2020). Inhibition of protein glycoxidation and advanced glycation end-product formation by barnyard millet (Echinochloa frumentacea) phenolics. Food Chemistry, 315, 126265. https://doi.org/10.1016/j.foodchem.2020.126265
  • Anitha, S., Govindaraj, M., & Kane-Potaka, J. (2020). Balanced amino acid and higher micronutrients in millets complements legumes for improved human dietary nutrition. Cereal Chemistry, 97(1), 74–84. https://doi.org/10.1002/cche.10227
  • Annor, G. A., Marcone, M., Corredig, M., Bertoft, E., & Seetharaman, K. (2015). Effects of the amount and type of fatty acids present in millets on their in vitro starch digestibility and expected glycemic index (eGI). Journal of Cereal Science, 64, 76–81. https://doi.org/10.1016/j.jcs.2015.04.010
  • Asharani, V. T., Jayadeep, A., & Malleshi, N. G. (2010). Natural antioxidants in edible flours of selected small millets. International Journal of Food Properties, 13(1), 41–50. https://doi.org/10.1080/10942910802252148
  • Asif, M. (2014). The prevention and control of type-2 diabetes by changing lifestyle and dietary pattern. Journal of Education and Health Promotion, 3(1), 1. https://doi.org/10.4103/2277-9531.127541
  • Bartley, D. M. (2020). World aquaculture 2020–A brief overview.
  • Bartwal, A., Mall, R., Lohani, P., Guru, S. K., & Arora, S. (2013). Role of secondary metabolites and brassinosteroids in plant defense against environmental stresses. Journal of Plant Growth Regulation, 32(2), 216–232. https://doi.org/10.1007/s00344-012-9272-x
  • Brown, A. J., Goldsworthy, S. M., Barnes, A. A., Eilert, M. M., Tcheang, L., Daniels, D., ... & Pike, N. B. (2003). The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. Journal of Biological Chemistry, 278(13), 11312–11319. https://doi.org/10.1074/jbc.M211609200
  • Brown, W. (1979). Interactions of small molecules with hydrated polymer networks. In G. E. Inglett (Ed.), Dietary fibers: Chemistry and nutrition (pp. 1–13). Academic Press.
  • Callens, K., Fontaine, F., Sanz, Y., Bogdanski, A., D’Hondt, K., Lange, L., ... & Meisner, A. (2022). Microbiome-based solutions to address new and existing threats to food security, nutrition, health and agrifood systems' sustainability. Frontiers in Sustainable Food Systems, 6, 1047765. https://doi.org/10.3389/fsufs.2022.1047765
  • Cardona, F., Andrés-Lacueva, C., Tulipani, S., Tinahones, F. J., & Queipo-Ortuño, M. I. (2013). Benefits of polyphenols on gut microbiota and implications in human health. The Journal of Nutritional Biochemistry, 24(8), 1415–1422. https://doi.org/10.1016/j.jnutbio.2013.05.001
  • Carlsson, A. H., Yakymenko, O., Olivier, I., Håkansson, F., Postma, E., Keita, Å. V., & Söderholm, J. D. (2013). Faecalibacterium prausnitzii supernatant improves intestinal barrier function in mice DSS colitis. Scandinavian Journal of Gastroenterology, 48(10), 1136–1144. https://doi.org/10.3109/00365521.2013.828773
  • Caterson, I. D., Hubbard, V., Bray, G. A., Grunstein, R., Hansen, B. C., Hong, Y., ... & Smith, S. C. (2004). Prevention Conference VII: Obesity, a worldwide epidemic related to heart disease and stroke: Group III: Worldwide comorbidities of obesity. Circulation, 110(18), e476–e483. https://doi.org/10.1161/01.CIR.0000140084.61233.CB
  • Chandra, D., Chandra, S., & Sharma, A. K. (2016). Review of finger millet (Eleusine coracana (L.) Gaertn): A power house of health benefiting nutrients. Food Science and Human Wellness, 5(3), 149–155. https://doi.org/10.1016/j.fshw.2016.05.004
  • Chandrasekara, A., & Shahidi, F. (2010). Content of insoluble bound phenolics in millets and their contribution to antioxidant capacity. Journal of Agricultural and Food Chemistry, 58(11), 6706–6714. https://doi.org/10.1021/jf100868b
  • Chandrasekara, A., & Shahidi, F. (2011). Bioactivities and antiradical properties of millet grains and hulls. Journal of Agricultural and Food Chemistry, 59(17), 9563–9571. https://doi.org/10.1021/jf201849d
  • Chandrasekara, A., & Shahidi, F. (2012). Bioaccessibility and antioxidant potential of millet grain phenolics as affected by simulated in vitro digestion and microbial fermentation. Journal of Functional Foods, 4(1), 226–237. https://doi.org/10.1016/j.jff.2011.11.001
  • Charaka, A. (2011). Sutrasthana, Annapanavidhi Adhyaya. Charaka Samhitha. Delhi: Chaukhamba Prakashan.
  • Cheung, K. L., Lee, J. H., Khor, T. O., Wu, T. Y., Li, G. X., Chan, J., ... & Kong, A. N. (2014). Nrf2 knockout enhances intestinal tumorigenesis in Apcmin/+ mice due to attenuation of anti-oxidative stress pathway while potentiates inflammation. Molecular Carcinogenesis, 53(1), 77–84. https://doi.org/10.1002/mc.21950
  • D’Archivio, M., Filesi, C., Di Benedetto, R., Gargiulo, R., Giovannini, C., & Masella, R. (2007). Polyphenols, dietary sources and bioavailability. Annali-Istituto Superiore di Sanità, 43(4), 348–361.
  • Das, S., Khound, R., Santra, M., & Santra, D. K. (2019). Beyond bird feed: Proso millet for human health and environment. Agriculture, 9(3), 64. https://doi.org/10.3390/agriculture9030064
  • Dayem, A. A., Choi, H. Y., Kim, J. H., & Cho, S. G. (2010). Role of oxidative stress in stem, cancer, and cancer stem cells. Cancers, 2(2), 859–884. https://doi.org/10.3390/cancers2020859
  • Devi, P. B., Vijayabharathi, R., Sathyabama, S., Malleshi, N. G., & Priyadarisini, V. B. (2014). Health benefits of finger millet (Eleusine coracana L.) polyphenols and dietary fiber: A review. Journal of Food Science and Technology, 51(6), 1021–1040. https://doi.org/10.1007/s13197-011-0584-9
  • Dragovic-Uzelac, V., Levaj, B., Mrkic, V., Bursac, D., & Boras, M. (2007). The content of polyphenols and carotenoids in three apricot cultivars depending on stage of maturity and geographical region. Food Chemistry, 102(3), 966–975. https://doi.org/10.1016/j.foodchem.2006.06.001
  • Eastwood, M. A., & Kay, R. M. (1979). An hypothesis for the action of dietary fiber along the gastrointestinal tract. The American Journal of Clinical Nutrition, 32(2), 364–367. https://doi.org/10.1093/ajcn/32.2.364
  • Ganguly, S., Sabikhi, L., & Singh, A. K. (2019). Effect of whey-pearl millet-barley based probiotic beverage on Shigella-induced pathogenicity in murine model. Journal of Functional Foods, 54, 498–505. https://doi.org/10.1016/j.jff.2019.02.003
  • García-Villalba, R., Beltrán, D., Espín, J. C., Selma, M. V., & Tomás-Barberán, F. A. (2013). Time course production of urolithins from ellagic acid by human gut microbiota. Journal of Agricultural and Food Chemistry, 61(37), 8797–8806. https://doi.org/10.1021/jf402498b
  • Garibaldi, L. (2012). The FAO global capture production database: A six-decade effort to catch the trend. Marine Policy, 36(3), 760–768. https://doi.org/10.1016/j.marpol.2011.10.024
  • Gasmi, A., Mujawdiya, P. K., Noor, S., Lysiuk, R., Darmohray, R., Piscopo, S., ... & Polishchuk, A. (2022). Polyphenols in metabolic diseases. Molecules, 27(19), 6280. https://doi.org/10.3390/molecules27196280
  • Goron, T. L., & Raizada, M. N. (2015). Genetic diversity and genomic resources available for the small millet crops to accelerate a New Green Revolution. Frontiers in Plant Science, 6, 157. https://doi.org/10.3389/fpls.2015.00157
  • Gowda, N. N., Siliveru, K., Prasad, P. V., Bhatt, Y., Netravati, B. P., & Gurikar, C. (2022). Modern processing of Indian millets: A perspective on changes in nutritional properties. Foods, 11(4), 499. https://doi.org/10.3390/foods11040499
  • Gupta, R. K., Gangoliya, S. S., & Singh, N. K. (2015). Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. Journal of Food Science and Technology, 52(2), 676–684. https://doi.org/10.1007/s13197-013-0978-y
  • Haase, S., Haghikia, A., Wilck, N., Müller, D. N., & Linker, R. A. (2018). Impacts of microbiome metabolites on immune regulation and autoimmunity. Immunology, 154(2), 230–238. https://doi.org/10.1111/imm.12901
  • Haghikia, A., Jörg, S., Duscha, A., Berg, J., Manzel, A., Waschbisch, A., ... & Balogh, A. (2015). Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity, 43(4), 817–829. https://doi.org/10.1016/j.immuni.2015.09.007
  • Harasym, J., Kaim, U., Bogacz-Radomska, L., & Olędzki, R. (2020). Development of functional foods by traditional food processes. In C. M. Galanakis (Ed.), Sustainability of the food system (pp. 131–146). Academic Press.
  • Hithamani, G., & Srinivasan, K. (2016). Bioaccessibility of polyphenols from onion (Allium cepa) as influenced by domestic heat processing and food acidulants. The Indian Journal of Nutrition and Dietetics, 53(4), 391–401.
  • Hong, Y. H., Nishimura, Y., Hishikawa, D., Tsuzuki, H., Miyahara, H., Gotoh, C., ... & Katoh, K. (2005). Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology, 146(12), 5092–5099. https://doi.org/10.1210/en.2005-0545
  • Jacob, J., Krishnan, V., Antony, C., Bhavyasri, M., Aruna, C., Mishra, K., ... & Visarada, K. B. (2024). The nutrition and therapeutic potential of millets: An updated narrative review. Frontiers in Nutrition, 11, 1346869.
  • Jones, J. R., Lineback, D. M., & Levine, M. J. (2006). Dietary reference intakes: Implications for fiber labeling and consumption: A summary of the International Life Sciences Institute North America Fiber Workshop, June 1–2, 2004, Washington, DC. Nutrition Reviews, 64(1), 31–38. https://doi.org/10.1111/j.1753-4887.2006.tb00176.x
  • Kaiyadeva, A. (2009). Dhanya varga. Kaiyadeva Nighantu (Pathyaapthya vibhodika). Varanasi: Choukambha Orientalia.
  • Kajla, V., Singh, B., Muskaan, S. K., Sharma, P., Vishali, M., & Sayam, A. (n.d.). Harnessing amygdalin in integrative medicine: Novel insights for endocrine disorders.
  • Kaur, S., Kumari, A., Seem, K., Kaur, G., Kumar, D., Verma, S., ... & Bhardwaj, R. (2024). Finger millet (Eleusine coracana L.): From staple to superfood—A comprehensive review on nutritional, bioactive, industrial, and climate resilience potential. Planta, 260(3), 75.
  • Kheya, S. A., Talukder, S. K., Datta, P., Yeasmin, S., Rashid, M. H., Hasan, A. K., ... & Islam, A. M. (2023). Millets: The future crops for the tropics—Status, challenges and future prospects. Heliyon, 9(11), e22010. https://doi.org/10.1016/j.heliyon.2023.e22010
  • Khiabani, S. A., Asgharzadeh, M., & Kafil, H. S. (2023). Chronic kidney disease and gut microbiota. Heliyon, 9(8), e18807. https://doi.org/10.1016/j.heliyon.2023.e18807
  • Kimura, I., Ichimura, A., Ohue-Kitano, R., & Igarashi, M. (2019). Free fatty acid receptors in health and disease. Physiological Reviews, 99(4), 1927–1970. https://doi.org/10.1152/physrev.00041.2018
  • Krueger, K., Boehme, E., Klettner, A. K., & Zille, M. (2022). The potential of marine resources for retinal diseases: A systematic review of the molecular mechanisms. Critical Reviews in Food Science and Nutrition, 62(27), 7518–7560. https://doi.org/10.1080/10408398.2021.1915740
  • Kumar, A., Rani, M., Mani, S., Shah, P., Singh, D. B., Kudapa, H., & Varshney, R. K. (2021). Nutritional significance and antioxidant-mediated antiaging effects of finger millet: Molecular insights and prospects. Frontiers in Sustainable Food Systems, 5, 684318. https://doi.org/10.3389/fsufs.2021.684318
  • Lenoir, M., Martín, R., Torres-Maravilla, E., Chadi, S., González-Dávila, P., Sokol, H., ... & Bermúdez-Humarán, L. G. (2020). Butyrate mediates anti-inflammatory effects of Faecalibacterium prausnitzii in intestinal epithelial cells through Dact3. Gut Microbes, 12(1), 1826748. https://doi.org/10.1080/19490976.2020.1826748
  • Li, L., Ma, L., & Fu, P. (2017). Gut microbiota–derived short-chain fatty acids and kidney diseases. Drug Design, Development and Therapy, 11, 3531–3542. https://doi.org/10.2147/DDDT.S150825
  • Liu, F., Shan, S., Li, H., Shi, J., Hao, R., Yang, R., & Li, Z. (2021). Millet shell polyphenols prevent atherosclerosis by protecting the gut barrier and remodeling the gut microbiota in ApoE−/− mice. Food & Function, 12(16), 7298–7309. https://doi.org/10.1039/D1FO01170A
  • Liu, Y., Zhang, S., Tang, L., Zhang, M., Wang, P., Sun, X., ... & Luo, P. (2023). Analysis of the effects of Rosa roxburghii Tratt fruit polyphenols on immune function in mice through gut microbiota and metabolomics: An in vivo preclinical trial study. Journal of Functional Foods, 102, 105464. https://doi.org/10.1016/j.jff.2023.105464
  • Lu, L. W., & Chen, J. H. (2022). Seaweeds as ingredients to lower glycemic potency of cereal foods synergistically—A perspective. Foods, 11(5), 714. https://doi.org/10.3390/foods11050714
  • Magliano, D. J., Boyko, E. J., & Atlas, I. D. (2021). Global picture. In IDF Diabetes Atlas (10th ed.). International Diabetes Federation.
  • Maharajan, T., Antony Ceasar, S., Ajeesh Krishna, T. P., & Ignacimuthu, S. (2021). Finger millet [Eleusine coracana (L.) Gaertn]: An orphan crop with a potential to alleviate the calcium deficiency in the semi-arid tropics of Asia and Africa. Frontiers in Sustainable Food Systems, 5, 684447. https://doi.org/10.3389/fsufs.2021.684447
  • Mansoria, P., & Singh, S. B. (2023). Unlocking the therapeutic potential of millets: A path to diabetes control. Journal of Ayurveda and Integrated Medical Sciences, 8(6), 152–157.
  • Marinissen, M. J., & Gutkind, J. S. (2001). G-protein-coupled receptors and signaling networks: Emerging paradigms. Trends in Pharmacological Sciences, 22(7), 368–376. https://doi.org/10.1016/S0165-6147(00)01678-3
  • Maurya, R., Boini, T., Misro, L., Radhakrishnan, T., Sreedharan, A. P., & Gaidhani, D. (2023). Comprehensive review on millets: Nutritional values, effect of food processing and dietary aspects. Journal of Drug Research in Ayurvedic Sciences, 8(Suppl 1), S82–S98.
  • Mena, P., Calani, L., Bruni, R., & Del Rio, D. (2015). Bioactivation of high-molecular-weight polyphenols by the gut microbiome. In K. Tuohy & D. Del Rio (Eds.), Diet-microbe interactions in the gut (pp. 73–101). Academic Press.
  • Miele, L., Giorgio, V., Alberelli, M. A., De Candia, E., Gasbarrini, A., & Grieco, A. (2015). Impact of gut microbiota on obesity, diabetes, and cardiovascular disease risk. Current Cardiology Reports, 17(12), 1–7. https://doi.org/10.1007/s11886-015-0671-z
  • Mikulajova, A., Šedivá, D., Čertík, M., Gereková, P., Németh, K., & Hybenová, E. (2017). Genotypic variation in nutritive and bioactive composition of foxtail millet. Cereal Research Communications, 45(3), 442–455. https://doi.org/10.1556/0806.45.2017.031
  • Miró-Casas, E., Gimeno, E., López-Sabater, M. C., de la Torre, R., & Farré, M. (2004). Effects of differing phenolic content in dietary olive oils on lipids and LDL oxidation. European Journal of Nutrition, 43(3), 140–147. https://doi.org/10.1007/s00394-004-0453-7
  • Mitharwal, S., Kumar, S., & Chauhan, K. (2021). Nutritional, polyphenolic composition and in vitro digestibility of finger millet (Eleusine coracana L.) with its potential food applications: A review. Food Bioscience, 44, 101382. https://doi.org/10.1016/j.fbio.2021.101382
  • Mondal, D., Awana, M., Aggarwal, S., Das, D., Thomas, B., Singh, S. P., ... & Sachdev, A. (2022). Microstructure, matrix interactions, and molecular structure are the key determinants of inherent glycemic potential in pearl millet (Pennisetum glaucum). Food Hydrocolloids, 127, 107481. https://doi.org/10.1016/j.foodhyd.2022.107481
  • Muro, P., Zhang, L., Li, S., Zhao, Z., Jin, T., Mao, F., & Mao, Z. (2024). The emerging role of oxidative stress in inflammatory bowel disease. Frontiers in Endocrinology, 15, 1390351.
  • Mutshinyani, M., Mashau, M. E., & Jideani, A. I. (2020). Bioactive compounds, antioxidant activity and consumer acceptability of porridges of finger millet (Eleusine coracana) flours: Effects of spontaneous fermentation. International Journal of Food Properties, 23(1), 1692–1710. https://doi.org/10.1080/10942912.2020.1818776
  • Newsholme, P., Cruzat, V. F., Keane, K. N., Carlessi, R., & de Bittencourt, P. I. (2016). Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochemical Journal, 473(24), 4527–4550. https://doi.org/10.1042/BCJ20160503C
  • Park, Y., Hunter, D. J., Spiegelman, D., Bergkvist, L., Berrino, F., Van Den Brandt, P. A., ... & Giovannucci, E. (2005). Dietary fiber intake and risk of colorectal cancer: A pooled analysis of prospective cohort studies. JAMA, 294(22), 2849–2857. https://doi.org/10.1001/jama.294.22.2849
  • Penman, I. D., Ralston, S. H., Strachan, M. W., & Hobson, R. (Eds.). (2022). Davidson's principles and practice of medicine E-book. Elsevier Health Sciences.
  • Piechota-Polanczyk, A., & Fichna, J. (2014). The role of oxidative stress in pathogenesis and treatment of inflammatory bowel diseases. Naunyn-Schmiedeberg's Archives of Pharmacology, 387(7), 605–620. https://doi.org/10.1007/s00210-014-0985-1
  • Pradeep, S. R., & Guha, M. (2011). Effect of processing methods on the nutraceutical and antioxidant properties of little millet (Panicum sumatrense) extracts. Food Chemistry, 126(4), 1643–1647. https://doi.org/10.1016/j.foodchem.2010.12.043
  • Qaisar, A. (n.d.). Efficacy of millets on improved glycemic response, lipid metabolism and combating oxidative stress and osteosarcopenia in older adults: A review. About the College.
  • Qiao, Y., Sun, J., Xia, S., Tang, X., Shi, Y., & Le, G. (2014). Effects of resveratrol on gut microbiota and fat storage in a mouse model with high-fat-induced obesity. Food & Function, 5(6), 1241–1249. https://doi.org/10.1039/C3FO60630A
  • Ramadoss, D. P., & Sivalingam, N. (2020). Vanillin extracted from Proso and Barnyard millets induce apoptotic cell death in HT-29 human colon cancer cell line. Nutrition and Cancer, 72(8), 1422–1437. https://doi.org/10.1080/01635581.2019.1675718
  • Rani, P., Maurya, D. K., Jaiswal, M., & Varshney, A. K. (2023). Shree Anna: Elixir of Life. Journal of Ayurveda and Integrated Medical Sciences, 8(4), 182–188.
  • Rani, P., Maurya, D. K., Jaiswal, M., & Varshney, A. K. (2023). Shree Anna: Elixir of Life. Journal of Ayurveda and Integrated Medical Sciences, 8(4), 182–188.
  • Ren, X., Chen, J., Wang, C., Molla, M. M., Diao, X., & Shen, Q. (2016). In vitro starch digestibility, degree of gelatinization and estimated glycemic index of foxtail millet-derived products: Effect of freezing and frozen storage. Journal of Cereal Science, 69, 166–173. https://doi.org/10.1016/j.jcs.2016.03.010
  • Ren, X., Wang, L., Chen, Z., Hou, D., Xue, Y., Diao, X., & Shen, Q. (2021). Foxtail millet improves blood glucose metabolism in diabetic rats through PI3K/Akt and NF-κB signaling pathways mediated by gut microbiota. Nutrients, 13(6), 1837. https://doi.org/10.3390/nu13061837
  • Ren, X., Wang, L., Chen, Z., Zhang, M., Hou, D., Xue, Y., ... & Shen, Q. (2022). Foxtail millet supplementation improves glucose metabolism and gut microbiota in rats with high-fat diet/streptozotocin-induced diabetes. Food Science and Human Wellness, 11(1), 119–128. https://doi.org/10.1016/j.fshw.2021.07.010
  • Ren, X., Yin, R., Hou, D., Xue, Y., Zhang, M., Diao, X., ... & Shen, Q. (2018). The glucose-lowering effect of foxtail millet in subjects with impaired glucose tolerance: A self-controlled clinical trial. Nutrients, 10(10), 1509. https://doi.org/10.3390/nu10101509
  • Rodríguez-Daza, M. C., Pulido-Mateos, E. C., Lupien-Meilleur, J., Guyonnet, D., Desjardins, Y., & Roy, D. (2021). Polyphenol-mediated gut microbiota modulation: Toward prebiotics and further. Frontiers in Nutrition, 8, 689456. https://doi.org/10.3389/fnut.2021.689456
  • Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., ... & Shaw, J. E. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. Diabetes Research and Clinical Practice, 157, 107843. https://doi.org/10.1016/j.diabres.2019.107843
  • Saini, S., Saxena, S., Samtiya, M., Puniya, M., & Dhewa, T. (2021). Potential of underutilized millets as Nutri-cereal: An overview. Journal of Food Science and Technology, 58(12), 4465–4477. https://doi.org/10.1007/s13197-021-04989-7
  • Saleh, A. S., Zhang, Q., Chen, J., & Shen, Q. (2013). Millet grains: Nutritional quality, processing, and potential health benefits. Comprehensive Reviews in Food Science and Food Safety, 12(3), 281–295. https://doi.org/10.1111/1541-4337.12012
  • Samtiya, M., Aluko, R. E., Dhaka, N., Dhewa, T., & Puniya, A. K. (2023). Nutritional and health-promoting attributes of millet: Current and future perspectives. Nutrition Reviews, 81(6), 684–704. https://doi.org/10.1093/nutrit/nuac081
  • Sarita, E. S., & Singh, E. (2016). Potential of millets: Nutrients composition and health benefits. Journal of Scientific and Innovative Research, 5(2), 46–50.
  • Scalbert, A., Johnson, I. T., & Saltmarsh, M. (2005). Polyphenols: Antioxidants and beyond. The American Journal of Clinical Nutrition, 81(1), 215S–217S. https://doi.org/10.1093/ajcn/81.1.215S
  • Schönfeld, P., & Wojtczak, L. (2016). Short-and medium-chain fatty acids in energy metabolism: The cellular perspective. Journal of Lipid Research, 57(6), 943–954. https://doi.org/10.1194/jlr.R067629
  • Sen, S. (2020). Food grains of India: A brief note on their therapeutic potential. In Herbal medicine in India: Indigenous knowledge, practice, innovation and its value (pp. 489–508). Springer.
  • Shan, S., Shi, J., Li, Z., Gao, H., Shi, T., Li, Z., & Li, Z. (2015). Targeted anti-colon cancer activities of a millet bran-derived peroxidase were mediated by elevated ROS generation. Food & Function, 6(7), 2331–2338. https://doi.org/10.1039/C5FO00323A
  • Shankaramurthy, K. N., & Somannavar, M. S. (2019). Moisture, carbohydrate, protein, fat, calcium, and zinc content in finger, foxtail, pearl, and proso millets. Indian Journal of Health Sciences and Biomedical Research, 12(3), 228–232. https://doi.org/10.4103/kleuhsj.kleuhsj_19_19
  • Sharif, M., John, P., Bhatti, A., Paracha, R. Z., & Majeed, A. (2024). Evaluation of the inhibitory mechanism of Pennisetum glaucum (pearl millet) bioactive compounds for rheumatoid arthritis: An in vitro and computational approach. Frontiers in Pharmacology, 15, 1488790.
  • Sharma, N., & Niranjan, K. (2018). Foxtail millet: Properties, processing, health benefits, and uses. Food Reviews International, 34(4), 329–363. https://doi.org/10.1080/87559129.2017.1290103
  • Sharma, R., & Sharma, S. (2022). Anti-nutrient & bioactive profile, in vitro nutrient digestibility, techno-functionality, molecular and structural interactions of foxtail millet (Setaria italica L.) as influenced by biological processing techniques. Food Chemistry, 368, 130815. https://doi.org/10.1016/j.foodchem.2021.130815
  • Shobana, S., Gayathri, R., Anitha, C., Kavitha, V., Gayathri, N., Bai, M. R., ... & Anjana, R. M. (2018). Finger millet (Eleusine coracana L.) and white rice diets elicit similar glycaemic response in Asian Indians: Evidence from a randomised clinical trial using continuous glucose monitoring. Malaysian Journal of Nutrition, 24(3), 455–466.
  • Shobana, S., Krishnaswamy, K., Sudha, V., Malleshi, N. G., Anjana, R. M., Palaniappan, L., & Mohan, V. (2013). Finger millet (Ragi, Eleusine coracana L.): A review of its nutritional properties, processing, and plausible health benefits. Advances in Food and Nutrition Research, 69, 1–39. https://doi.org/10.1016/B978-0-12-410540-9.00001-6
  • Shrestha, J., Subedi, S., Shrestha, S., Rai, S., Poudel, A., Adhikari, S., ... & Limbu, A. K. (2024). Crop biofortification of finger millet through agronomic approaches to enhance bioactive compounds for human health and nutrition. Agronomy Journal of Nepal, 8, 237–249.
  • Singh, V., Lee, G., Son, H., Amani, S., Baunthiyal, M., & Shin, J. H. (2022). Anti-diabetic prospects of dietary bio-actives of millets and the significance of the gut microbiota: A case of finger millet. Frontiers in Nutrition, 9, 1056445. https://doi.org/10.3389/fnut.2022.1056445
  • Sireesha, Y., Kasetti, R. B., Nabi, S. A., Swapna, S., & Apparao, C. (2011). Antihyperglycemic and hypolipidemic activities of Setaria italica seeds in STZ diabetic rats. Pathophysiology, 18(2), 159–164. https://doi.org/10.1016/j.pathophys.2010.08.001
  • Song, Y., Wu, M. S., Tao, G., Lu, M. W., Lin, J., & Huang, J. Q. (2020). Feruloylated oligosaccharides and ferulic acid alter gut microbiome to alleviate diabetic syndrome. Food Research International, 137, 109410. https://doi.org/10.1016/j.foodres.2020.109410
  • Sowunmi, L. I., Babalola, Y. O., & Ogunbamowo, P. O. (2025). The cultivation, nutritional polyphenolic contents, bioavailability, and health benefits of finger millet (Eleusine coracana (L.) Gaertn.): An updated review. In Food Security and Nutrition (pp. 97–116).
  • Srilekha, K., Kamalaja, T., Uma Maheswari, K., & Neela Rani, R. (2019). Nutritional composition of little millet flour. International Research Journal of Pure and Applied Chemistry, 20(4), 1–4.
  • Stevens, J. F., & Maier, C. S. (2016). The chemistry of gut microbial metabolism of polyphenols. Phytochemistry Reviews, 15(3), 425–444. https://doi.org/10.1007/s11101-016-9459-z
  • Suryawanshi, P., & Ghatge, C. A. (n.d.). Role of millets in the prevention of non-communicable diseases–A review.
  • Temple, N. J. (2022). A rational definition for functional foods: A perspective. Frontiers in Nutrition, 9, 957516. https://doi.org/10.3389/fnut.2022.957516
  • Thangaraju, M., Cresci, G. A., Liu, K., Ananth, S., Gnanaprakasam, J. P., Browning, D. D., ... & Prasad, P. D. (2009). GPR109A is a G-protein–coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Research, 69(7), 2826–2832. https://doi.org/10.1158/0008-5472.CAN-08-4466
  • Tripathi, A., Chauhan, D. K., Singh, G. S., & Kumar, N. (2016). Effect of elevated CO2 on plant-environment interaction. In Plant-environment interaction (pp. 184–200). Springer.
  • Tripathi, M. K., Jadam, R. S., & Kumar, A. (2021). Quality management system in millet and sorghum. In Millets and millet technology (pp. 363–379). Springer.
  • Tsubokawa, M., Nishimura, M., Mikami, T., Ishida, M., Hisada, T., & Tamada, Y. (2022). Association of gut microbial genera with heart rate variability in the general Japanese population: The Iwaki cross-sectional research study. Metabolites, 12(8), 730. https://doi.org/10.3390/metabo12080730
  • Tyl, C., Marti, A., Hayek, J., Anderson, J., & Ismail, B. P. (2018). Effect of growing location and variety on nutritional and functional properties of proso millet (Panicum miliaceum) grown as a double crop. Cereal Chemistry, 95(2), 288–301. https://doi.org/10.1002/cche.10027
  • Tzounis, X., Vulevic, J., Kuhnle, G. G., George, T., Leonczak, J., Gibson, G. R., ... & Spencer, J. P. (2008). Flavanol monomer-induced changes to the human faecal microflora. British Journal of Nutrition, 99(4), 782–792. https://doi.org/10.1017/S0007114507853384
  • Udeh, H. O., Duodu, K. G., & Jideani, A. I. (2017). Finger millet bioactive compounds, bioaccessibility, and potential health effects—A review. Czech Journal of Food Sciences, 35(1), 1–10. https://doi.org/10.17221/188/2016-CJFS
  • Unnikrishnan, P. M., & Patil, S. (2021). An eyeshot on Kshudra Dhanya in Ayurveda. Journal of Ayurveda and Integrated Medical Sciences, 6(4), 118–124.
  • Valdés, L., Cuervo, A., Salazar, N., Ruas-Madiedo, P., Gueimonde, M., & González, S. (2015). The relationship between phenolic compounds from diet and microbiota: Impact on human health. Food & Function, 6(8), 2424–2439. https://doi.org/10.1039/C5FO00322A
  • Vidhyalakshmi, R., & Meera, M. S. (2024). Role of millets in pre-diabetes and diabetes: Effect of processing and product formulation. Journal of Food Science and Technology, 61(2), 1–4.
  • Walle, T., Hsieh, F., DeLegge, M. H., Oatis, J. E., & Walle, U. K. (2004). High absorption but very low bioavailability of oral resveratrol in humans. Drug Metabolism and Disposition, 32(12), 1377–1382. https://doi.org/10.1124/dmd.104.000885
  • Wang, H., Fu, Y., Zhao, Q., Hou, D., Yang, X., Bai, S., ... & Shen, Q. (2022). Effect of different processing methods on the millet polyphenols and their anti-diabetic potential. Frontiers in Nutrition, 9, 780499. https://doi.org/10.3389/fnut.2022.780499
  • Wang, H., Fu, Y., Zhao, Q., Liu, Z., Wang, C., Xue, Y., & Shen, Q. (2023). Effects of heat-treated starch and protein from foxtail millet (Setaria italica) on type 2 diabetic mice. Food Chemistry, 404, 134735. https://doi.org/10.1016/j.foodchem.2022.134735
  • Wang, H., Shen, Q., Fu, Y., Liu, Z., Wu, T., Wang, C., & Zhao, Q. (2023). Effects on diabetic mice of consuming lipid extracted from foxtail millet (Setaria italica): Gut microbiota analysis and serum metabolomics. Journal of Agricultural and Food Chemistry, 71(26), 10075–10086. https://doi.org/10.1021/acs.jafc.3c01234
  • Wang, Z., Jia, Y., Li, W., & Zhang, M. (2021). Antimicrobial photodynamic inactivation with curcumin against Staphylococcus saprophyticus, in vitro and on fresh dough sheet. LWT, 147, 111567. https://doi.org/10.1016/j.lwt.2021.111567
  • Wegener, G. (2014). ‘Let food be thy medicine, and medicine be thy food’: Hippocrates revisited. Acta Neuropsychiatrica, 26(1), 1–3. https://doi.org/10.1017/neu.2013.40
  • Wilson, D. S., Dalmasso, G., Wang, L., Sitaraman, S. V., Merlin, D., & Murthy, N. (2010). Orally delivered thioketal nanoparticles loaded with TNF-α–siRNA target inflammation and inhibit gene expression in the intestines. Nature Materials, 9(11), 923–928. https://doi.org/10.1038/nmat2859
  • Yahia, E. M., Maldonado Celis, M. E., & Svendsen, M. (2017). The contribution of fruit and vegetable consumption to human health. In E. M. Yahia (Ed.), Fruit and vegetable phytochemicals: Chemistry and human health (2nd ed., pp. 1–52). Wiley-Blackwell.
  • Yang, X., Zhang, S., He, C., Xue, P., Zhang, L., He, Z., ... & Sun, J. (2020). METTL14 suppresses proliferation and metastasis of colorectal cancer by down-regulating oncogenic long non-coding RNA XIST. Molecular Cancer, 19(1), 1–16. https://doi.org/10.1186/s12943-020-01220-7
  • Yin, D., Yin, X., Wang, X., Lei, Z., Wang, M., Guo, Y., ... & Yuan, J. (2018). Supplementation of amylase combined with glucoamylase or protease changes intestinal microbiota diversity and benefits for broilers fed a diet of newly harvested corn. Journal of Animal Science and Biotechnology, 9(1), 1–12. https://doi.org/10.1186/s40104-018-0281-x
  • Zhang, L. Z., & Liu, R. H. (2015). Phenolic and carotenoid profiles and antiproliferative activity of foxtail millet. Food Chemistry, 174, 495–501. https://doi.org/10.1016/j.foodchem.2014.11.071
  • Zhang, Y., Liu, W., Zhang, D., Yang, Y., Wang, X., & Li, L. (2021). Fermented and germinated processing improved the protective effects of foxtail millet whole grain against dextran sulfate sodium-induced acute ulcerative colitis and gut microbiota dysbiosis in C57BL/6 mice. Frontiers in Nutrition, 8, 694936. https://doi.org/10.3389/fnut.2021.694936
  • Zhao, L., Zhang, Q., Ma, W., Tian, F., Shen, H., & Zhou, M. (2017). A combination of quercetin and resveratrol reduces obesity in high-fat diet-fed rats by modulation of gut microbiota. Food & Function, 8(12), 4644–4656. https://doi.org/10.1039/C7FO01383C