Liposomes as Potential Delivery System for Herbal and Synthetic Drugs

Abstract

Background: Liposomes represent an appealing drug delivery system because of their better and adaptable physicochemical and biophysical features, which allow for easy manipulation to address various delivery concerns.

Purpose: The use of liposomes for drug delivery currently has been greatly impacted across many biomedical fields. They have been proven to be effective in achieving the following objectives: stabilizing medicinal compounds, eliminating obstacles to cellular and tissue absorption, and enhancing the bio distribution of drugs to target sites in vivo. This reduces systemic toxicity while facilitating the effective distribution of encapsulated compounds to target areas. Liposome-assisted drug delivery platforms have made progress in clinical translation, despite a great deal of research and a number of promising preclinical results.

Method: Recent literature has been surveyed from PUBMED, GOOGLE SCHOLAR, etc., like search engines, for summarising detailed developments in the field of liposomes for various applications, which could prove to be a novel drug delivery system.

Result and Conclusion: In this review, the focus has been on drug loading in liposomes, mechanism of transportation, method of preparation of liposomes, advancements in drug transport facilitated by liposomes, and applications of liposomes in biomedicine.

  • Page Number : 25-35
  • Published Date : 2024-11-20
  • Keywords
    Liposomes, Drug loading, Controlled release, Drug delivery
  • DOI Number
    10.15415/jptrm.2024.122003
  • Authors
    Muskan Sood, Anu Jindal, Shaveta Bhardwaj, Pranab Moudgil, and Kalpna Kashyap

References

  • Abbasi, H., Kouchak, M., Mirveis, Z., Hajipour, F., Khodarahmi, M., Rahbar, N., & Handali, S. (2023). What We Need to Know about Liposomes as Drug Nanocarriers: An Updated Review. Advanced Pharmaceutical Bulletin, 13(1), 7–23. Tabriz University of Medical Sciences. https://doi.org/10.34172/apb.2023.009
  • Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S. W., Zarghami, N., Hanifehpour, Y., Samiei, M., Kouhi, M., & Nejati-Koshki, K. (2013). Liposome: Classification, preparation, and applications. Nanoscale Research Letters, 8(1). https://doi.org/10.1186/1556-276X-8-102
  • Alshawwa, S. Z., Kassem, A. A., Farid, R. M., Mostafa, S. K., & Labib, G. S. (2022). Nanocarrier Drug Delivery Systems: Characterization, Limitations, Future Perspectives and Implementation of Artificial Intelligence. Pharmaceutics, 14(4). MDPI. https://doi.org/10.3390/pharmaceutics14040883
  • Anand, K., Khawas, S., Singh, A., Kumari, R., & Sharma, N. (2023). Recent Advances in Lipid Nano-Carrier Systems for the Management of Inflammatory Diseases: A Comprehensive Review. Journal of Pharmaceutical Technology Research and Management, 11(2), 77-92. https://doi.org/10.15415/jprtm.2023.112001
  • Bande, P., & Dudhe, A. (2022). Review On: Liposomes A Novel Drug Delivery System, International Journal of Pharmaceutical Research and Applications, 7(4), 1803-1808
  • Bangham, A. D. (2005). Liposomes and the physico‐chemical basis of unconsciousness. The FASEB Journal, 19(13), 1766–1768. https://doi.org/10.1096/fj.05-1103ufm
  • Bangham, A.D. (1983). Liposome Letters. Academic Press, 1983.
  • Bulbake, U., Doppalapudi, S., Kommineni, N., & Khan, W. (2017). Liposomal formulations in clinical use: An updated review. Pharmaceutics, 9(2). MDPI AG. https://doi.org/10.3390/pharmaceutics9020012
  • Çağdaş, M., Sezer, A. D., & Bucak, S. (2014). Liposomes as Potential Drug Carrier Systems for Drug Delivery. Application of Nanotechnology in Drug Delivery. InTech. https://doi.org/10.5772/58459
  • Cevenini, A., Celia, C., Orrù, S., Sarnataro, D., Raia, M., Mollo, V., Locatelli, M., Imperlini, E., Peluso, N., Peltrini, R., De Rosa, E., Parodi, A., Del Vecchio, L., Di Marzio, L., Fresta, M., Netti, P. A., Shen, H., Liu, X., Tasciotti, E., & Salvatore, F. (2020). Liposome‐embedding silicon microparticle for oxaliplatin delivery in tumor chemotherapy. Pharmaceutics, 12(6), 1–28. https://doi.org/10.3390/pharmaceutics12060559
  • Chang, H. I., & Yeh, M. K. (2012). Clinical development of liposome-based drugs: Formulation, characterization, and therapeutic efficacy. In International Journal of Nanomedicine, 7, 49–60). https://doi.org/10.2147/ijn.s26766
  • Charumathy, A., Ubaidulla, U., Sinha, P., & Rathnam, G. (2022). Recent update on liposome-based drug delivery system. Int. J. Curr. Pharm. Res14(3), 22-27.
  • Choudhury, A., Sonowal, K., Laskar, R. E., Deka, D., & Dey, B. K. (2020). Liposome: a carrier for effective drug delivery. Journal of Applied Pharmaceutical Research8(1), 22-28.
  • Daraee, H., Etemadi, A., Kouhi, M., Alimirzalu, S., & Akbarzadeh, A. (2016). Application of liposomes in medicine and drug delivery. Artificial Cells, Nanomedicine and Biotechnology, 44(1), 381–391. Taylor and Francis Ltd. https://doi.org/10.3109/21691401.2014.953633.
  • Deshmukh, R. R., Gawale, S. V., Bhagwat, M. K., Ahire, P. A., & Derle, N. D. (2016). A review on: liposomes. World J Pharm Pharm Sci5(3), 506-517.
  • Di Francia, R., Crisci, S., De Monaco, A., Cafiero, C., Re, A., Iaccarino, G., De Filippi, R., Frigeri, F., Corazzelli, G., Micera, A., & Pinto, A. (2021). Response and toxicity to cytarabine therapy in leukemia and lymphoma: From dose puzzle to pharmacogenomic biomarkers. Cancers, 13(5), 1–39. MDPI AG. https://doi.org/10.3390/cancers13050966
  • Divyasree, R., Divya, K., Aarti, S., Bhavani, K., Vamsidhar, M., Bhanja, S. B., Sudhakar, M. & Panigrahi, B. B. (2022). A comprehensive review on Liposomes: a novel drug delivery system. International Journal of Pharmaceutical Sciences and Research13(2), 628-644.
  • Ebrahim, S., Peyman, G. A., & Lee, P. J. (2005). Applications of liposomes in ophthalmology. Survey of Ophthalmology, 50(2), 167–182. https://doi.org/10.1016/j.survophthal.2004.12.006
  • Eloy, J. O., Claro de Souza, M., Petrilli, R., Barcellos, J. P. A., Lee, R. J., & Marchetti, J. M. (2014). Liposomes as carriers of hydrophilic small molecule drugs: Strategies to enhance encapsulation and delivery. Colloids and Surfaces B: Biointerfaces, 123, 345–363). Elsevier. https://doi.org/10.1016/j.colsurfb.2014.09.029
  • Felnerova, D., Viret, J. F., Glück, R., & Moser, C. (2004). Liposomes and virosomes as delivery systems for antigens, nucleic acids and drugs. In Current Opinion in Biotechnology, 15(6), 518–529). https://doi.org/10.1016/j.copbio.2004.10.005
  • Forssen, E., & Willis, M. (1998). Ligand-targeted liposomes. Advanced drug delivery reviews29(3), 249-271.
  • Gao, W., Hu, C. M. J., Fang, R. H., & Zhang, L. (2013). Liposome-like nanostructures for drug delivery. Journal of Materials Chemistry B, 1(48), 6569–6585. https://doi.org/10.1039/c3tb21238f
  • Gradauer, K., Barthelmes, J., Vonach, C., Almer, G., Mangge, H., Teubl, B., Roblegg, E., Dünnhaupt, S., Fröhlich, E., Bernkop-Schnürch, A., & Prassl, R. (2013). Liposomes coated with thiolated chitosan enhance oral peptide delivery to rats. Journal of Controlled Release, 172(3), 872–878. https://doi.org/10.1016/j.jconrel.2013.10.011
  • Gregoriadis, G. (2021). Liposomes and mRNA: Two technologies together create a COVID-19 vaccine. Medicine in Drug Discovery, 12, 100104. https://doi.org/10.1016/j.medidd.2021.100104
  • Hadorn, M., Boenzli, E., Eggenberger Hotz, P., & Hanczyc, M. M. (2012). Hierarchical unilamellar vesicles of controlled compositional heterogeneity. PLoS One7(11), e50156.
  • He, H., Lu, Y., Qi, J., Zhu, Q., Chen, Z., & Wu, W. (2019). Adapting liposomes for oral drug delivery. Acta pharmaceutica sinica B9(1), 36-48. https://doi.org/10.1016/j.apsb.2018.06.005
  • Ishida, T., Harashima, H., & Kiwada, H. (2001). Interactions of liposomes with cells in vitro and in vivo: opsonins and receptors. Current drug metabolism2(4), 397-409.
  • Jabin, K., Husain, Z., Ahmad, M., & Kushwaha, P. (2018). Liposome: Classification, preparation, and applications. World Journal of Pharmacy and Pharmaceutical Sciences7(9), 1307-1319.
  • Kaur S, Goyal A, Rai A, Sharma A, Ugoeze, K.C. & Singh I. (2023). Quercetin nanoformulations: recent advancements and therapeutic applications. Advances in Natural Sciences: Nanoscience and Nanotechnology14(3), 033002. https://doi.org/10.1088/2043-6262/acedaa
  • Kelly, C., Jefferies, C., & Cryan, S. A. (2011). Targeted Liposomal Drug Delivery to Monocytes and Macrophages. Journal of Drug Delivery, 2011, 1–11. https://doi.org/10.1155/2011/727241
  • Khan, A. A., Allemailem, K. S., Almatroodi, S. A., Almatroudi, A., & Rahmani, A. H. (2020). Recent strategies towards the surface modification of liposomes: an innovative approach for different clinical applications. 3 Biotech10, 1-15. https://doi.org/10.1007/s13205-020-2144-3
  • Kirui, D. K., Celia, C., Molinaro, R., Bansal, S. S., Cosco, D., Fresta, M., Shen, H., & Ferrari, M. (2015). Mild Hyperthermia Enhances Transport of Liposomal Gemcitabine and Improves In Vivo Therapeutic Response. Advanced Healthcare Materials, 4(7), 1092–1103. https://doi.org/10.1002/adhm.201400738
  • Liu, P., Chen, G., & Zhang, J. (2022a). A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives. Molecules, 27(4). MDPI. https://doi.org/10.3390/molecules27041372
  • Lombardo, D., & Kiselev, M. A. (2022). Methods of Liposomes Preparation: Formation and Control Factors of Versatile Nanocarriers for Biomedical and Nanomedicine Application. Pharmaceutics, 14(3). MDPI. https://doi.org/10.3390/pharmaceutics14030543
  • Lugano, R., Ramachandran, M., & Dimberg, A. (2020). Tumor angiogenesis: causes, consequences, challenges and opportunities. Cellular and Molecular Life Sciences, 77(9), 1745–1770. Springer. https://doi.org/10.1007/s00018-019-03351-7
  • Maja, L., Željko, K., & Mateja, P. (2020). Sustainable technologies for liposome preparation. The Journal of Supercritical Fluids165, 104984. https://doi.org/10.1016/j.supflu.2020.104984
  • Mehta, P. P., Ghoshal, D., Pawar, A. P., Kadam, S. S., & Dhapte-Pawar, V. S. (2020). Recent advances in inhalable liposomes for treatment of pulmonary diseases: Concept to clinical stance. Journal of Drug Delivery Science and Technology, 56. Editions de Sante. https://doi.org/10.1016/j.jddst.2020.101509
  • Mishra, G. P., Bagui, M., Tamboli, V., & Mitra, A. K. (2011). Recent Applications of Liposomes in Ophthalmic Drug Delivery. Journal of Drug Delivery, 2011, 1–14. https://doi.org/10.1155/2011/863734
  • Neil M. (2001). Verteporfin therapy of subfoveal choroidal neovascularization in age-related macular degeneration: two-year results of a randomized clinical trial including lesions with occult with no classic choroidal neovascularization—verteporfin in photodynamic therapy report 2. American Journal of Ophthalmology, 133(1), 168 – 169.
  • Nsairat, H., Khater, D., Sayed, U., Odeh, F., Al Bawab, A., & Alshaer, W. (2022). Liposomes: structure, composition, types, and clinical applications. Heliyon, 8(5). Elsevier Ltd. https://doi.org/10.1016/j.heliyon.2022.e09394
  • Olusanya, T. O. B., Ahmad, R. R. H., Ibegbu, D. M., Smith, J. R., & Elkordy, A. A. (2018). Liposomal drug delivery systems and anticancer drugs. Molecules, 23(4). MDPI AG. https://doi.org/10.3390/molecules23040907
  • Pande, S. (2023a). Liposomes for drug delivery: review of vesicular composition, factors affecting drug release and drug loading in liposomes. Artificial Cells, Nanomedicine and Biotechnology, 51(1), 428–440. Taylor and Francis Ltd. https://doi.org/10.1080/21691401.2023.2247036
  • Pandey, H., Rani, R., & Agarwal, V. (2016). Liposome and their applications in cancer therapy. Brazilian Archives of Biology and Technology, 59. https://doi.org/10.1590/1678-4324-2016150477.
  • Pauli, G., Tang, W. L., & Li, S. D. (2019). Development and characterization of the solvent-assisted active loading technology (SALT) for liposomal loading of poorly water-soluble compounds. Pharmaceutics11(9), 465. https://doi.org/10.3390/pharmaceutics11090465
  • Peralta, M. F., Guzmán, M. L., Pérez, A. P., Apezteguia, G. A., Fórmica, M. L., Romero, E. L., Olivera, M. E., & Carrer, D. C. (2018). Liposomes can both enhance or reduce drugs penetration through the skin. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-31693-y
  • Pierre, M. B. R., & Dos Santos Miranda Costa, I. (2011). Liposomal systems as drug delivery vehicles for dermal and transdermal applications. Archives of Dermatological Research, 303(9), 607–621. https://doi.org/10.1007/s00403-011-1166-4
  • Reis, J. (2015). Liposomal formulations of amphotericin B: differences according to the scientific evidence. Rev. esp. quimioter28, 275-281.
  • Rudramurthy, S. M., Jatana, M., Singh, R., & Chakrabarti, A. (2013). In vitro antifungal activity of Indian liposomal amphotericin B against clinical isolates of emerging species of yeast and moulds, and its comparison with amphotericin B deoxycholate, voriconazole, itraconazole and fluconazole. Mycoses, 56(1), 39–46. https://doi.org/10.1111/j.1439-0507.2012.02197.x
  • Schiller, G. J., Damon, L. E., Stock, W., Coutre, S. E., Hsu, P., Prasad, L., & Douer, D. (2015). Marqibo®, vincristine sulfate liposome injection, for the treatment of advanced, relapsed or refractory Philadelphia chromosome-negative (Ph-) acute lymphoblastic leukemia (ALL) in an adolescent young adult (AYA) population. Blood126(23), 1291.
  • Sercombe, L., Veerati, T., Moheimani, F., Wu, S. Y., Sood, A. K., & Hua, S. (2015). Advances and challenges of liposome assisted drug delivery. Frontiers in pharmacology6, 286. https://doi.org/10.3389/fphar.2015.00286
  • Soni, V., Chandel, S., Jain, P., & Asati, S. (2016). Role of liposomal drug-delivery system in cosmetics. Nanobiomaterials in Galenic Formulations and Cosmetics: Applications of Nanobiomaterials, 93–108. Elsevier Inc. https://doi.org/10.1016/B978-0-323-42868-2.00005-X
  • Souto, E. B., Macedo, A. S., Dias-Ferreira, J., Cano, A., Zielińska, A., & Matos, C. M. (2021). Elastic and ultradeformable liposomes for transdermal delivery of active pharmaceutical ingredients (Apis). International Journal of Molecular Sciences, 22(18). MDPI. https://doi.org/10.3390/ijms22189743
  • Šturm, L., & Ulrih, N. P. (2021). Basic methods for preparation of liposomes and studying their interactions with different compounds, with the emphasis on polyphenols. International Journal of Molecular Sciences, 22(12). MDPI AG. https://doi.org/10.3390/ijms22126547
  • Sur, S., Fries, A. C., Kinzler, K. W., Zhou, S., & Vogelstein, B. (2014). Remote loading of preencapsulated drugs into stealth liposomes. Proceedings of the National Academy of Sciences of the United States of America, 111(6), 2283–2288. https://doi.org/10.1073/pnas.1324135111
  • Tenchov, R., Bird, R., Curtze, A. E., & Zhou, Q. (2021). Lipid Nanoparticles from Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano, 15(11), 16982–17015. American Chemical Society. https://doi.org/10.1021/acsnano.1c04996
  • Wang, G., Zannikou, M., Lofchy, L., Li, Y., Gaikwad, H., Balyasnikova, I. V., & Simberg, D. (2021). Liposomal Extravasation and Accumulation in Tumors as Studied by Fluorescence Microscopy and Imaging Depend on the Fluorescent Label. ACS Nano, 15(7), 11880–11890. https://doi.org/10.1021/acsnano.1c02982
  • Wu, J. (2021). The enhanced permeability anopo) effect: The significance of the concept and methods to enhance its application. Journal of Personalized Medicine, 11(8). MDPI. https://doi.org/10.3390/jpm11080771
  • Zhen, Y., Ewert, K. K., Fisher, W. S., Steffes, V. M., Li, Y., & Safinya, C. R. (2021). Paclitaxel loading in cationic liposome vectors is enhanced by replacement of oleoyl with linoleoyl tails with distinct lipid shapes. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-86484-9
  • Zhigaltsev, I. V., Winters, G., Srinivasulu, M., Crawford, J., Wong, M., Amankwa, L., Waterhouse, D., Masin, D., Webb, M., Harasym, N., Heller, L., Bally, M. B., Ciufolini, M. A., Cullis, P. R., & Maurer, N. (2010). Development of a weak-base docetaxel derivative that can be loaded into lipid nanoparticles. Journal of Controlled Release, 144(3), 332–340. https://doi.org/10.1016/j.jconrel.2010.02.029