Tapping the Potential of Probiotics: An Insight on Probiotic Delivery Systems, Their Quantification, and Assessment
Abstract
Background: Dysbiosis of the microbiota and gastrointestinal dysfunction are common characteristics of gastrointestinal diseases. Probiotics can alter the gut microbiota and serve as biological agents for treating digestive disorders. Although probiotics show promise in treating gastrointestinal disorders, several obstacles could hinder their effectiveness. These include concerns about safety, stress resistance, quantifying post-colonization, and evaluation methods.
Purpose: The aim of this review is to introduce the probiotic delivery methods and their mechanisms of action. It also described the functions of bacteriocins in providing probiotic strains with an advantage over competing treatments and the challenges associated with widespread deployment. It also evaluates current fluorescence-induced methods and numerous laboratory experiments involving living organisms’ models for quantifying probiotics in complex microbiomes and assessing probiotic delivery systems.
Method: The approach includes a systematic analysis of recent developments in encapsulation technologies, delivery mechanisms, and innovative strategies for enhancing probiotic stability and functionality.
Result: The review found that encapsulation technologies have significantly evolved, with microencapsulation and nanoparticle systems being the most effective in ensuring the survival of probiotics through the gastrointestinal tract.
Conclusion: Probiotics could be used in gastrointestinal illnesses more effectively as therapeutic agents. This review has shown that effective delivery systems are critical to ensuring the viability and functionality of probiotics throughout their journey from production to gastrointestinal colonization. In conclusion, while substantial strides have been made in probiotic delivery, quantification, and assessment, continued interdisciplinary research and collaboration are essential to fully harness the benefits of probiotics in healthcare.
- Page Number : 143-161
-
Published Date : 2023-11-10
- Keywords
- DOI Number
10.15415/jprtm.2023.112007 -
Authors
Minkal Tuteja, Anupama Choudhary, Prince Rohilla, and Gaurav Rohilla
References
- Abishad, P., Vergis, J., Unni, V., Ram, V. P., Niveditha, P., Yasur, J., John, L., Byrappa, K., Nambiar, P., Kurkure, N.V., Barbuddhe, S.B., & Rawool, D. B. (2022). Green synthesized silver nanoparticles using Lactobacillus acidophilus as an antioxidant, antimicrobial, and antibiofilm agent against multi-drug resistant enteroaggregative Escherichia coli. Probiotics and antimicrobial proteins, 14(5), 904-914. https://doi.org/10.1007/s12602-022-09961-1
- Aceti, A., Beghetti, I., Maggio, L., Martini, S., Faldella, G., & Corvaglia, L. (2018). Filling the gaps: Current research directions for a rational use of probiotics in preterm infants. Nutrients, 10(10), 1472. https://doi.org/10.3390/nu10101472
- Akgül, T., & Karakan, T. (2018). The role of probiotics in women with recurrent urinary tract infections. Turkish journal of urology, 44(5), 377. https://doi.org/10.5152/tud.2018.48742
- Albadran, H. A., Chatzifragkou, A., Khutoryanskiy, V. V., & Charalampopoulos, D. (2015). Stability of probiotic Lactobacillus plantarum in dry microcapsules under accelerated storage conditions. Food Research International, 74, 208-216. https://doi.org/10.1016/j.foodres.2015.05.016
- Allain, T., Chaouch, S., Thomas, M., Vallée, I., Buret, A. G., Langella, P., Grellier, P., Polack, B., Bermúdez-Humarán, L.G., & Florent, I. (2018). Bile-salt-hydrolases from the probiotic strain Lactobacillus johnsonii La1 mediate anti-giardial activity in vitro and in vivo. Frontiers in Microbiology, 8, 2707. https://doi.org/10.3389/fmicb.2017.02707
- Altamirano‐Ríos, A. V., Guadarrama‐Lezama, A. Y., Arroyo‐Maya, I. J., Hernández‐Álvarez, A. J., & Orozco‐Villafuerte, J. (2022). Effect of encapsulation methods and materials on the survival and viability of Lactobacillus acidophilus: A review. International Journal of Food Science & Technology, 57(7), 4027-4040. https://doi.org/10.1111/ijfs.15779
- Anjum, M., Laitila, A., Ouwehand, A. C., & Forssten, S. D. (2022). Current perspectives on gastrointestinal models to assess probiotic-pathogen interactions. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.831455
- Anselmo, A. C., McHugh, K. J., Webster, J., Langer, R., & Jaklenec, A. (2016). Layer-by-layer encapsulation of probiotics for delivery to the microbiome. Advanced Materials (Deerfield Beach, Fla.), 28(43), 9486. https://doi.org/10.1002%2Fadma.201603270
- Arciero, J. C., Ermentrout, G. B., Upperman, J. S., Vodovotz, Y., & Rubin, J. E. (2010). Using a mathematical model to analyze the role of probiotics and inflammation in necrotizing enterocolitis. PLoS One, 5(4), e10066. https://doi.org/10.1371/journal.pone.0010066
- Aron-Wisnewsky, J., Vigliotti, C., Witjes, J., Le, P., Holleboom, A. G., Verheij, J., Nieuwdorp, M., & Clément, K. (2020). Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders. Nature Reviews Gastroenterology & Hepatology, 17(5), 279-297. https://doi.org/10.1038/s41575-020-0269-9
- Asgari, S., Pourjavadi, A., Licht, T. R., Boisen, A., & Ajalloueian, F. (2020). Polymeric carriers for enhanced delivery of probiotics. Advanced drug delivery reviews, 161, 1-21. https://doi.org/10.1016/j.addr.2020.07.014
- Atassi, F., Pho Viet Ahn, D. L., & Lievin-Le Moal, V. (2019). Diverse expression of antimicrobial activities against bacterial vaginosis and urinary tract infection pathogens by cervicovaginal microbiota strains of Lactobacillus gasseri and Lactobacillus crispatus. Frontiers in microbiology, 10, 2900. https://doi.org/10.3389/fmicb.2019.02900
- Ballini, A., Gnoni, A., De Vito, D., Dipalma, G., Cantore, S., Santacroce, L., Scacco, S., & Inchingolo, F. (2019). Effect of probiotics on the occurrence of nutrition absorption capacities in healthy children: A randomized double-blinded placebo-controlled pilot study. European Review for Medical and Pharmacological Sciences, 23(19), 8645-8657. https://doi. org/10.26355/eurrev_201910_19182
- Barbier, M., Bevere, J., & Damron, F. H. (2018). In vivo bacterial imaging using bioluminescence. Reporter Gene Imaging: Methods and Protocols, 87-97. https://doi.org/10.1007/978-1-4939-7860-1_7
- Bermúdez-Humarán, L. G., Salinas, E., Ortiz, G. G., Ramirez-Jirano, L. J., Morales, J. A., & Bitzer-Quintero, O. K. (2019). From probiotics to psychobiotics: live beneficial bacteria which act on the brain-gut axis. Nutrients, 11(4), 890. https://doi.org/10.3390/nu11040890
- Bevilacqua, A., Speranza, B., Santillo, A., Albenzio, M., Gallo, M., Sinigaglia, M., & Corbo, M. R. (2019). Alginate-microencapsulation of Lactobacillus casei and Bifidobacterium bifidum: Performances of encapsulated microorganisms and bead-validation in lamb rennet. LWT, 113, 108349. https://doi.org/10.1016/j.lwt.2019.108349
- Bron, P. A., Kleerebezem, M., Brummer, R. J., Cani, P. D., Mercenier, A., MacDonald, T. T., Garcia-Ródenas, C. L., & Wells, J. M. (2017). Can probiotics modulate human disease by impacting intestinal barrier function? British Journal of Nutrition, 117(1), 93-107. https://doi.org/10.1017/S0007114516004037
- Bullok, K. E., Gammon, S. T., Violini, S., Prantner, A. M., Villalobos, V. M., Sharma, V., & Piwnica-Worms, D. (2006). Permeation peptide conjugates for in vivo molecular imaging applications. Molecular Imaging, 5(1), 7290-2006. https://doi.org/10.2310/7290.2006.00001
- Chandel, D., Sharma, M., Chawla, V., Sachdeva, N., & Shukla, G. (2019). Isolation, characterization and identification of antigenotoxic and anticancerous indigenous probiotics and their prophylactic potential in experimental colon carcinogenesis. Scientific Reports, 9(1), 14769. https://doi.org/ 10.1038/s41598-019-51361-z
- Chen, H. J., Lin, D. A., Liu, F., Zhou, L., Liu, D., Lin, Z., Yang, C., Jin, Q., Hang, T., & Xie, X. (2018). Transdermal delivery of living and biofunctional probiotics through dissolvable microneedle patches. ACS Applied Bio Materials, 1(2), 374-381. https://pubs.acs.org/doi/abs/10.1021/acsabm.8b00102
- Chen, J., Feng, S., Chen, M., Li, P., Yang, Y., Zhang, J., Li, Y., Chen, S., & Chen, S. (2020). In Vivo Dynamic Monitoring of Bacterial Infection by NIR‐II Fluorescence Imaging. Small, 16(34), 2002054. https://doi.org/10.1002/smll.202002054
- Chen, Y. H., Tsai, W. H., Wu, H. Y., Chen, C. Y., Yeh, W. L., Chen, Y. H., ... & Lai, C. H. (2019). Probiotic Lactobacillus spp. act against Helicobacter pylori-induced inflammation. Journal of clinical medicine, 8(1), 90. https://doi.org/10.3390/jcm8010090
- Chi, H., Qiu, Y., Ye, X., Shi, J., & Li, Z. (2023). Preparation strategy of hydrogel microsphere and its application in skin repair. Frontiers in Bioengineering and Biotechnology, 11, 1239183.
- Choi, Y. M., Lee, Y. Q., Song, H. S., & Lee, D. Y. (2020). Genome scale metabolic models and analysis for evaluating probiotic potentials. Biochemical Society Transactions, 48(4), 1309-1321. https://doi.org/10.1042/BST20190668
- Choudhary, R., & Mahadevan, R. (2020). Toward a systematic design of smart probiotics. Current Opinion in Biotechnology, 64, 199-209. https://doi.org/10.1016/j.copbio.2020.05.003
- Cizeikiene, D., & Jagelaviciute, J. (2021). Investigation of antibacterial activity and probiotic properties of strains belonging to Lactobacillus and Bifidobacterium genera for their potential application in functional food and feed products. Probiotics and Antimicrobial Proteins, 1-17. https://doi.org/10.1007/s12602-021-09777-5
- Clua, P., Kanmani, P., Zelaya, H., Tada, A., Kober, A. H., Salva, S., Alvarez, S., Kitazawa, H., & Villena, J. (2017). Peptidoglycan from immunobiotic Lactobacillus rhamnosus improves resistance of infant mice to respiratory syncytial viral infection and secondary pneumococcal pneumonia. Frontiers in immunology, 8, 948. https://doi.org/ 10.3389/fmmu.2017.00948
- CNIPA. (2021). CN Patent No. 110321924 B. https://patents.google.com/patent/CN110321924B/en
- Cook, M. T., Tzortzis, G., Khutoryanskiy, V. V., & Charalampopoulos, D. (2013). Layer-by-layer coating of alginate matrices with chitosan–alginate for the improved survival and targeted delivery of probiotic bacteria after oral administration. Journal of Materials Chemistry B, 1(1), 52-60. https://doi.org/10.1039/C2TB00126H
- Costanzo, M., Cesi, V., Palone, F., Pierdomenico, M., Colantoni, E., Leter, B., Vitali, R., Negroni, A., Cucchiara, S., & Stronati, L. (2018). Krill oil, vitamin D and Lactobacillus reuteri cooperate to reduce gut inflammation. Beneficial microbes, 9(3), 389-399. https://doi.org/10.3920/BM2017.0078
- Dalile, B., Van Oudenhove, L., Vervliet, B., & Verbeke, K. (2019). The role of short-chain fatty acids in microbiota–gut–brain communication. Nature reviews Gastroenterology & hepatology, 16(8), 461-478. https://doi. org/10.1038/s41575-019-0157-3
- De Barros, J. M., Lechner, T., Charalampopoulos, D., Khutoryanskiy, V. V., & Edwards, A. D. (2015). Enteric coated spheres produced by extrusion/spheronization provide effective gastric protection and efficient release of live therapeutic bacteria. International journal of pharmaceutics, 493(1-2), 483-494. https://doi.org/10.1016/j.ijpharm.2015.06.051
- De Gregorio, V., Sgambato, C., Urciuolo, F., Vecchione, R., Netti, P. A., & Imparato, G. (2022). Immunoresponsive microbiota-gut-on-chip reproduces barrier dysfunction, stromal reshaping and probiotics translocation under inflammation. Biomaterials, 286, 121573. https://doi.org/10.1016/j.biomaterials.2022.121573
- Devani, P., Ruparelia, A., Garcia-Larsen, V., Cunha, S., Chivenge, J., Robinson, Z., & Boyle, R. (2017). Optimal mode of delivery for using probiotics or prebiotics to prevent eczema: A systematic review and meta-analysis. Clinical and Experimental Allergy, 47(12).
- Dodoo, C. C., Wang, J., Basit, A. W., Stapleton, P., & Gaisford, S. (2017). Targeted delivery of probiotics to enhance gastrointestinal stability and intestinal colonisation. International Journal of Pharmaceutics, 530(1-2), 224-229. https://doi.org/10.1016/j.ijpharm.2017.07.068
- Donaldson, G. P., Lee, S. M., & Mazmanian, S. K. (2016). Gut biogeography of the bacterial microbiota. Nature Reviews Microbiology, 14(1), 20-32. https://doi.org/10.1038/nrmicro3552
- Drago, L., Nicola, L., Iemoli, E., Banfi, G., & De Vecchi, E. (2010). Strain-dependent release of cytokines modulated by Lactobacillus salivarius human isolates in an in vitro model. BMC Research Notes, 3, 1-5.https://doi.org/ 10.1186/1756-0500-3-44
- Dronkers, T. M., Ouwehand, A. C., & Rijkers, G. T. (2020). Global analysis of clinical trials with probiotics. Heliyon, 6(7).
- Dubey, M. R., & Patel, V. P. (2018). Probiotics: A promising tool for calcium absorption. The open nutrition journal, 12(1). https://doi.org/10. 2174/1874288201812010059
- Duque, A. L. R. F., Demarqui, F. M., Santoni, M. M., Zanelli, C. F., Adorno, M. A. T., Milenkovic, D., Mesa, V., & Sivieri, K. (2021). Effect of probiotic, prebiotic, and synbiotic on the gut microbiota of autistic children using an in vitro gut microbiome model. Food Research International, 149, 110657. https://doi.org/10.1016/j.foodres.2021.110657
- Eguchi, K., Fujitani, N., Nakagawa, H., & Miyazaki, T. (2019). Prevention of respiratory syncytial virus infection with probiotic lactic acid bacterium Lactobacillus gasseri SBT2055. Scientific reports, 9(1), 4812. https://doi.org/10.1038/s41598-019-39602-7
- El-Sayed, H. S., El-Sayed, S. M., Mabrouk, A. M., Nawwar, G. A., & Youssef, A. M. (2021). Development of eco-friendly probiotic edible coatings based on chitosan, alginate and carboxymethyl cellulose for improving the shelf life of UF soft cheese. Journal of Polymers and the Environment, 29, 1941-1953. https://doi.org/10.1007/s10924-020-02003-3
- Engevik, M. A., Ruan, W., Esparza, M., Fultz, R., Shi, Z., Engevik, K. A., & Versalovic, J. (2021). Immunomodulation of dendritic cells by Lactobacillus reuteri surface components and metabolites. Physiological reports, 9(2), e14719. https://doi.org/10.14814/phy2.14719
- EPO. (2021). EP Patent No. 3,381,601. https://worldwide.espacenet.com/patent/EP3381601
- Faber, F., Tran, L., Byndloss, M. X., Lopez, C. A., Velazquez, E. M., Kerrinnes, T., & Bäumler, A. J. (2016). Host-mediated sugar oxidation promotes post-antibiotic pathogen expansion. Nature, 534(7609), 697-699. https://doi.org/10.1038/nature18597
- Ferrer-González, E., Fujita, J., Yoshizawa, T., Nelson, J. M., Pilch, A. J., Hillman, E., & Pilch, D. S. (2019). Structure-guided design of a fluorescent probe for the visualization of FtsZ in clinically important gram-positive and gram-negative bacterial pathogens. Scientific reports, 9(1), 20092. https://doi.org/10.1038/s41598-019-56557-x
- Gan, B. H., Siriwardena, T. N., Javor, S., Darbre, T., & Reymond, J. L. (2019). Fluorescence imaging of bacterial killing by antimicrobial peptide dendrimer G3KL. ACS infectious diseases, 5(12), 2164-2173.
- Gani, A., Shah, A., Ahmad, M., Ashwar, B. A., & Masoodi, F. A. (2018). β-d-glucan as an enteric delivery vehicle for probiotics. International journal of biological macromolecules, 106, 864-869. https://doi.org/10.1016/j.ijbiomac.2017.08.093
- Garcia-Brand, A. J., Quezada, V., Gonzalez-Melo, C., Bolaños-Barbosa, A. D., Cruz, J. C., & Reyes, L. H. (2022). Novel developments on stimuli-responsive probiotic encapsulates: from smart hydrogels to nanostructured platforms. Fermentation, 8(3), 117. https://doi.org/10.3390/fermentation8030117
- Ghadimi, D., Nielsen, A., Hassan, M. F., Fölster-Holst, R., Ebsen, M., Frahm, S. O., Christoph, R., Michael, D.V., & Heller, K. J. (2021). Modulation of proinflammatory bacteria-and lipid-coupled intracellular signaling pathways in a Transwell triple co-culture model by commensal Bifidobacterium animalis R101-8. Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Inflammatory and Anti-Allergy Agents), 20(2), 161-181. https://doi.org/10.2174/1871523019999201029115618
- Gheorghita, R., Anchidin-Norocel, L., Filip, R., Dimian, M., & Covasa, M. (2021). Applications of biopolymers for drugs and probiotics delivery. Polymers, 13(16), 2729. https://doi.org/10.3390/polym13162729
- González-Ferrero, C., Irache, J. M., & González-Navarro, C. J. (2018). Soybean protein-based microparticles for oral delivery of probiotics with improved stability during storage and gut resistance. Food chemistry, 239, 879-888. https://doi.org/10.1016/j.foodchem.2017.07.022
- Górska, A., Przystupski, D., Niemczura, M. J., & Kulbacka, J. (2019). Probiotic bacteria: a promising tool in cancer prevention and therapy. Current microbiology, 76, 939-949. https://doi.org/10.1007/ s00284-019-01679-8
- Gościniak, A., Eder, P., Walkowiak, J., & Cielecka-Piontek, J. (2022). Artificial gastrointestinal models for nutraceuticals research—achievements and challenges: a practical review. Nutrients, 14(13), 2560. https://doi.org/10.3390/nu14132560
- Gou, H. Z., Zhang, Y. L., Ren, L. F., Li, Z. J., & Zhang, L. (2022). How do intestinal probiotics restore the intestinal barrier? Frontiers in microbiology, 13, 929346. https://doi.org/10.3389/fmicb.2022.929346.
- Gu, Q., & Li, P. (2016). Biosynthesis of vitamins by probiotic bacteria. Probiotics and prebiotics in human nutrition and health, 135-48. https://doi.org/10.5772/63117
- Guan, C., Yang, Y., Tian, D., Jiang, Z., Zhang, H., Li, Y., & Wang, T. (2022). Evaluation of an Ussing chamber system equipped with rat intestinal tissues to predict intestinal absorption and metabolism in humans. European Journal of Drug Metabolism and Pharmacokinetics, 47(5), 639-652. https://doi.org/10.1007/s13318-022-00780-x
- Guevarra, R. B., & Barraquio, V. L. (2015). Viable counts of lactic acid bacteria in Philippine commercial yogurts. Int J Dairy Sci Process, 2(5), 24-28.
- Gulzar, N., Saleem, I. M., Rafiq, S., & Nadeem, M. (2019). Therapeutic potential of probiotics and prebiotics. Oral Health by Using Probiotic Products. https:// doi.org/10.5772/intechopen.86762
- Haque, A., Bowe, F., Fitzhenry, R. J., Frankel, G., Thomson, M., Heuschkel, R., & Dougan, G. (2004). Early interactions of Salmonella enterica serovar typhimurium with human small intestinal epithelial explants. Gut, 53(10), 1424-1430. https://doi.org/10.1136/gut.2003.037382
- Hendijani, F., & Akbari, V. (2018). Probiotic supplementation for management of cardiovascular risk factors in adults with type II diabetes: a systematic review and meta-analysis. Clinical Nutrition, 37(2), 532-541. https://doi.org/10.1016/j.clnu.2017.02.015
- Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., & Sanders, M. E. (2014). The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature reviews Gastroenterology & hepatology, 11(8), 506-514.
- Hoppe, M., Önning, G., Berggren, A., & Hulthén, L. (2015). Probiotic strain Lactobacillus plantarum 299v increases iron absorption from an iron-supplemented fruit drink: a double-isotope cross-over single-blind study in women of reproductive age. British Journal of Nutrition, 114(8), 1195-1202. https://doi.org/10.1017/S000711451500241X
- Hu, F., Qi, G., Kenry, Mao, D., Zhou, S., Wu, M., & Liu, B. (2020). Visualization and in situ ablation of intracellular bacterial pathogens through metabolic labeling. Angewandte Chemie International Edition, 59(24), 9288-9292. https://doi.org/10.1002/anie.201910187
- Hu, L., Zhou, M., Young, A., Zhao, W., & Yan, Z. (2019). In vivo effectiveness and safety of probiotics on prophylaxis and treatment of oral candidiasis: a systematic review and meta-analysis. BMC Oral Health, 19, 1-12. https://doi.org/10.1186/s12903-019-0841-2
- Imai, Y., Meyer, K. J., Iinishi, A., Favre-Godal, Q., Green, R., Manuse, S., & Lewis, K. (2019). A new antibiotic selectively kills Gram-negative pathogens. Nature, 576(7787), 459-464. https://doi.org/10.1038/s41586-019-1791-1
- Jan, T., Negi, R., Sharma, B., Kumar, S., Singh, S., Rai, A. K., & Ahmed, N. (2024). Next generation probiotics for human health: An emerging perspective. Heliyon.
- Johansson, M. E., & Hansson, G. C. (2012). Preservation of mucus in histological sections, immunostaining of mucins in fixed tissue, and localization of bacteria with FISH. Mucins: Methods and protocols, 229-235. https://doi.org/10.1007/978-1-61779-513-8_13
- Juturu, V., & Wu, J. C. (2018). Microbial production of bacteriocins: Latest research development and applications. Biotechnology advances, 36(8), 2187-2200. https://doi.org/10.1016/j.biotechadv.2018.10.007
- Khorasani, A. C., & Shojaosadati, S. A. (2016). Bacterial nanocellulose-pectin bionanocomposites as prebiotics against drying and gastrointestinal condition. International journal of biological macromolecules, 83, 9-18. https://doi.org/10.1016/j.ijbiomac.2015.11.041
- Khorasani, A. C., & Shojaosadati, S. A. (2017). Starch-and carboxymethylcellulose-coated bacterial nanocellulose-pectin bionanocomposite as novel protective prebiotic matrices. Food Hydrocolloids, 63, 273-285. https://doi.org/10.1016/j.foodhyd.2016.09.002
- Kim, C. S., & Shin, D. M. (2019). Probiotic food consumption is associated with lower severity and prevalence of depression: a nationwide cross-sectional study. Nutrition, 63, 169-174. https://doi.org/ 10.1016/j.nut.2019.02.007
- Kim, J., Hlaing, S. P., Lee, J., Saparbayeva, A., Kim, S., Hwang, D. S., & Yoo, J. W. (2021). Exfoliated bentonite/alginate nanocomposite hydrogel enhances intestinal delivery of probiotics by resistance to gastric pH and on-demand disintegration. Carbohydrate Polymers, 272, 118462. https://doi.org/10.1016/j.carbpol.2021.118462
- Konishi, H., Fujiya, M., Tanaka, H., Ueno, N., Moriichi, K., Sasajima, J., & Kohgo, Y. (2016). Probiotic-derived ferrichrome inhibits colon cancer progression via JNK-mediated apoptosis. Nature communications, 7(1), 12365. https://doi.org/10.1016/j.tifs.2020.02.021
- Lavelle, A., & Sokol, H. (2020). Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nature reviews Gastroenterology & hepatology, 17(4), 223-237. https://doi.org/10.1038/s41575-019-0258-z
- Leevy, W. M., Gammon, S. T., Johnson, J. R., Lampkins, A. J., Jiang, H., Marquez, M., & Smith, B. D. (2008). Noninvasive optical imaging of staphylococcus aureus bacterial infection in living mice using a Bis-dipicolylamine-Zinc (II) affinity group conjugated to a near-infrared fluorophore. Bioconjugate chemistry, 19(3), 686-692.
- Li-Juan, L.I., School, S.F., (2013). Effects of dietary chitosan and probiotics on growth and non-specific immunity of Pelteobagrusfulvidraco. Journal of Anhui Agri. Ences. 26(6), 2614–2619.
- Li, Y., Liu, F., Zhang, J., Liu, X., Xiao, P., Bai, H., & Tang, B. Z. (2021). Efficient killing of multidrug‐resistant internalized bacteria by AIEgens in vivo. Advanced Science, 8(9), 2001750. https://doi.org/10.1002/advs.202001750
- Lim, B., Zimmermann, M., Barry, N. A., & Goodman, A. L. (2017). Engineered regulatory systems modulate gene expression of human commensals in the gut. Cell, 169(3), 547-558.
- Liu, H., Xie, M., & Nie, S. (2020). Recent trends and applications of polysaccharides for microencapsulation of probiotics. Food frontiers, 1(1), 45-59. https://doi.org/10.1002/fft2.11
- Maftei, N. M., Raileanu, C. R., Balta, A. A., Ambrose, L., Boev, M., Marin, D. B., & Lisa, E. L. (2024). The Potential Impact of Probiotics on Human Health: An Update on Their Health-Promoting Properties. Microorganisms, 12(2), 234. https://doi.org/10.3390/microorganisms12020234
- Maldonado Galdeano, C., Cazorla, S. I., Lemme Dumit, J. M., Vélez, E., & Perdigón, G. (2019). Beneficial effects of probiotic consumption on the immune system. Annals of Nutrition and Metabolism, 74(2), 115-124. https://doi.org/10.1159/000496426
- Markowiak, P., & Śliżewska, K. (2017). Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients, 9(9), 1021. https://doi.org/10.3390/nu9091021
- Marx, U., Accastelli, E., David, R., Erfurth, H., Koenig, L., Lauster, R., & Dehne, E. M. (2021). An Individual Patient's “Body” on Chips—How Organismoid Theory Can Translate Into Your Personal Precision Therapy Approach. Frontiers in Medicine, 8, 728866. https://doi.org/10.3389/fmed.2021.728866
- Marzorati, M., Van den Abbeele, P., Bubeck, S., Bayne, T., Krishnan, K., & Young, A. (2021). Treatment with a spore-based probiotic containing five strains of Bacillus induced changes in the metabolic activity and community composition of the gut microbiota in a SHIME® model of the human gastrointestinal system. Food Research International, 149, 110676.
- Maslov, I., Bogorodskiy, A., Mishin, A., Okhrimenko, I., Gushchin, I., Kalenov, S., & Borshchevskiy, V. (2018). Efficient non-cytotoxic fluorescent staining of halophiles. Scientific reports, 8(1), 2549. https://doi.org/10.1038/s41598-018-20839-7
- McFarland, L. V. (2010). Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World journal of gastroenterology: WJG, 16(18), 2202. https://doi.org/10.3748/wjg.v16.i18.2202
- Michael, D. R., Davies, T. S., Moss, J. W. E., Calvente, D. L., Ramji, D. P., Marchesi, J. R., & Hughes, T. R. (2017). The anti-cholesterolaemic effect of a consortium of probiotics: An acute study in C57BL/6J mice. Scientific reports, 7(1), 2883. https://doi.org/10. 1038/s41598-017-02889-5
- Mishra, S., Wang, S., Nagpal, R., Miller, B., Singh, R., Taraphder, S., & Yadav, H. (2019). Probiotics and prebiotics for the amelioration of type 1 diabetes: present and future perspectives. Microorganisms, 7(3), 67. https://doi.org/10.3390/ microorganisms7030067
- Molska, M., & Reguła, J. (2019). Potential mechanisms of probiotics action in the prevention and treatment of colorectal cancer. Nutrients, 11(10), 2453. https://doi.org/10.3390/nu11102453
- Monteagudo-Mera, A., Rastall, R. A., Gibson, G. R., Charalampopoulos, D., & Chatzifragkou, A. (2019). Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Applied microbiology and biotechnology, 103, 6463-6472. https://doi.org/10.1007/s00253-019-09978-7
- National Institutes of Health (NIH). Human Microbiome Project defnes normal bacterial makeup of the body. https://www.nih.gov/news-events/news-releases/nih-human-microbiome-project-defines-normal-bacterial-makeup-body
- Nazir, Y., Hussain, S. A., Abdul Hamid, A., & Song, Y. (2018). Probiotics and their potential preventive and therapeutic role for cancer, high serum cholesterol, and allergic and HIV diseases. BioMed research international, 2018(1), 3428437. https://doi.org/10.1155/2018/3428437
- Neil, K., Allard, N., Roy, P., Grenier, F., Menendez, A., Burrus, V., & Rodrigue, S. (2021). High‐efficiency delivery of CRISPR‐Cas9 by engineered probiotics enables precise microbiome editing. Molecular systems biology, 17(10), e10335. https://doi.org/10.15252/msb.202110335
- Nekhotiaeva, N., Elmquist, A., Rajarao, G. K., Hällbrink, M., Langel, Ü., & Good, L. (2004). Cell entry and antimicrobial properties of eukaryotic cell‐penetrating peptides. The FASEB Journal, 18(2), 1-15. https://doi.org/10.1096/fj.03-0449fje
- Nyvad, B., & Takahashi, N. (2020). Integrated hypothesis of dental caries and periodontal diseases. Journal of oral microbiology, 12(1), 1710953. https://doi.org/10.1080/20002297.2019.1710953
- Obayomi, O. V., Olaniran, A. F., & Owa, S. O. (2024). Unveiling the role of functional foods with emphasis on prebiotics and probiotics in human health: A review. Journal of Functional Foods, 119, 106337. https://doi.org/10.1016/j.jff.2024.106337
- Odila Pereira, J., Soares, J., Costa, E., Silva, S., Gomes, A., & Pintado, M. (2019). Characterization of edible films based on alginate or whey protein incorporated with Bifidobacterium animalis subsp. lactis BB-12 and prebiotics. Coatings, 9(8), 493. https://doi.org/10.3390/coatings9080493
- Olnood, C. G., Beski, S. S., Iji, P. A., & Choct, M. (2015). Delivery routes for probiotics: Effects on broiler performance, intestinal morphology and gut microflora. Animal Nutrition, 1(3), 192-202. https://doi.org/10.1016/j.aninu.2015.07.002
- Padhmavathi, V., Shruthy, R., & Preetha, R. (2023). Chitosan coated skim milk-alginate microspheres for better survival of probiotics during gastrointestinal transit. Journal of Food Science and Technology, 60(3), 889-895. https://doi.org/10.1007/s13197-021-05179-1
- Panigrahi, P., Parida, S., Nanda, N. C., Satpathy, R., Pradhan, L., Chandel, D. S., & Gewolb, I. H. (2017). A randomized synbiotic trial to prevent sepsis among infants in rural India. Nature, 548(7668), 407-412. https://doi.org/10.1038/nature23480
- Park, S., Kang, J., Choi, S., Park, H., Hwang, E., Kang, Y., & Ji, Y. (2018). Cholesterol-lowering effect of Lactobacillus rhamnosus BFE5264 and its influence on the gut microbiome and propionate level in a murine model. PLoS One, 13(8), e0203150. https://doi.org/10.1371/journal.pone.0203150
- Pasquina-Lemonche, L., Burns, J., Turner, R. D., Kumar, S., Tank, R., Mullin, N., & Hobbs, J. K. (2020). The architecture of the Gram-positive bacterial cell wall. Nature, 582(7811), 294-297. https://doi.org/10.1038/s41586-020-2236-6
- Percopo, C. M., Rice, T. A., Brenner, T. A., Dyer, K. D., Luo, J. L., Kanakabandi, K., & Rosenberg, H. F. (2015). Immunobiotic Lactobacillus administered post-exposure averts the lethal sequelae of respiratory virus infection. Antiviral research, 121, 109-119. https://doi.org/10.1016/j.antiviral.2015.07.001
- Picard, C., Fioramonti, J., Francois, A., Robinson, T., Neant, F., & Matuchansky, C. (2005). bifidobacteria as probiotic agents–physiological effects and clinical benefits. Alimentary pharmacology & therapeutics, 22(6), 495-512. https://doi.org/10.1111/j.1365-2036.2005.02615.x
- Plaza-Diaz, J., Ruiz-Ojeda, F. J., Gil-Campos, M., & Gil, A. (2019). Mechanisms of action of probiotics. Advances in nutrition, 10, S49-S66. https://doi. org/10.1093/advances/nmy063
- Priya, A. J., Vijayalakshmi, S. P., & Raichur, A. M. (2011). Enhanced survival of probiotic Lactobacillus acidophilus by encapsulation with nanostructured polyelectrolyte layers through layer-by-layer approach. Journal of agricultural and food chemistry, 59(21), 11838-11845.
- Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., & Wang, J. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464(7285), 59-65. https://doi.org/10.1038/nature08821
- Razavi, S., Janfaza, S., Tasnim, N., Gibson, D. L., & Hoorfar, M. (2021). Microencapsulating polymers for probiotics delivery systems: Preparation, characterization, and applications. Food Hydrocolloids, 120, 106882. https://doi.org/10.1016/j.foodhyd.2021.106882
- Rivera-Chávez, F., Zhang, L. F., Faber, F., Lopez, C. A., Byndloss, M. X., Olsan, E. E., & Bäumler, A. J. (2016). Depletion of butyrate-producing Clostridia from the gut microbiota drives an aerobic luminal expansion of Salmonella. Cell host & microbe, 19(4), 443-454.
- Rodgers, B., Kirley, K., & Mounsey, A. (2013). Prescribing an antibiotic? Pair it with probiotics. The Journal of family practice, 62(3), 148.
- Ruiz, L., Flórez, A. B., Sánchez, B., Moreno-Muñoz, J. A., Rodriguez-Palmero, M., Jiménez, J., & Margolles, A. (2020). Bifidobacterium longum subsp. infantis CECT7210 (B. infantis IM-1®) displays in vitro activity against some intestinal pathogens. Nutrients, 12(11), 3259. https://doi.org/10.3390/nu12113259
- Sadeghi-Bojd, S., Naghshizadian, R., Mazaheri, M., Ghane Sharbaf, F., & Assadi, F. (2020). Efficacy of probiotic prophylaxis after the first febrile urinary tract infection in children with normal urinary tracts. Journal of the Pediatric Infectious Diseases Society, 9(3), 305-310. https://doi.org/10.1093/jpids/piz025
- Sanders, M. E., Merenstein, D., Merrifield, C. A., & Hutkins, R. (2018). Probiotics for human use. Nutrition bulletin, 43(3), 212-225. https://doi.org/ 10.1111/nbu.12334
- Scalfaro, C., Iacobino, A., Nardis, C., & Franciosa, G. (2017). Galleria mellonella as an in vivo model for assessing the protective activity of probiotics against gastrointestinal bacterial pathogens. FEMS microbiology letters, 364(7), 064. https://doi.org/10.1093/femsle/fnx064
- Shen, H., Zhao, Z., Zhao, Z., Chen, Y., & Zhang, L. (2022). Native and engineered probiotics: promising agents against related systemic and intestinal diseases. International Journal of Molecular Sciences, 23(2), 594. https://doi.org/10.3390/ijms23020594
- Shu, Z., Li, P., Yu, B., Huang, S., & Chen, Y. (2020). The effectiveness of probiotics in prevention and treatment of cancer therapy-induced oral mucositis: A systematic review and meta-analysis. Oral oncology, 102, 104559. https://doi.org/10.1016/j.oraloncology.2019.104559
- Singh, I., Kumar, P., & Pillay, V. (2018). Site-specific delivery of polymeric encapsulated microorganisms: a patent evaluation of US20170165201A1. Expert Opinion on Therapeutic Patents, 28(9), 703-708. https://doi.org/10.1080/13543776.2018.1516752
- Singh, P., Medronho, B., Alves, L., Da Silva, G. J., Miguel, M. G., & Lindman, B. (2017). Development of carboxymethyl cellulose-chitosan hybrid micro-and macroparticles for encapsulation of probiotic bacteria. Carbohydrate Polymers, 175, 87-95.
- Skrypnik, K., Bogdański, P., Schmidt, M., & Suliburska, J. (2019). The effect of multispecies probiotic supplementation on iron status in rats. Biological trace element research, 192, 234-243. https://doi.org/10.1007/ s12011-019-1658-1
- Spencer, N. J., & Hu, H. (2020). Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nature reviews Gastroenterology & hepatology, 17(6), 338-351. https://doi.org/10.1038/ s41575-020-0271-2
- Sudo, N. (2019). Role of gut microbiota in brain function and stress-related pathology. Bioscience of microbiota, food and health, 38(3), 75-80. https://doi.org/10.12938/bmfh.19-006
- Suez, J., Zmora, N., Segal, E., & Elinav, E. (2019). The pros, cons, and many unknowns of probiotics. Nature medicine, 25(5), 716-729. https:// doi.org/10.1038/s41591-019-0439-x
- Sun, Q., Yin, S., He, Y., Cao, Y., & Jiang, C. (2023). Biomaterials and encapsulation techniques for probiotics: Current status and future prospects in biomedical applications. Nanomaterials, 13(15), 2185. https://doi.org/10.3390/nano13152185
- Ta, L. P., Bujna, E., Kun, S., Charalampopoulos, D., & Khutoryanskiy, V. V. (2021). Electrosprayed mucoadhesive alginate-chitosan microcapsules for gastrointestinal delivery of probiotics. International Journal of Pharmaceutics, 597, 120342. https://doi.org/10.1016/j.ijpharm.2021.120342
- Thomas, R. M., & Jobin, C. (2020). Microbiota in pancreatic health and disease: the next frontier in microbiome research. Nature Reviews Gastroenterology & Hepatology, 17(1), 53-64. https://doi.org/10.1038/ s41575-019-0242-7
- Tropini, C., Earle, K. A., Huang, K. C., & Sonnenburg, J. L. (2017). The gut microbiome: connecting spatial organization to function. Cell host & microbe, 21(4), 433-442.
- Tungland, B. (2018). Human microbiota in health and disease: From pathogenesis to therapy. https://doi.org/10.1016/B978-0-12-814649-1. 00002-8
- USPTO. (2019a). US Patent No. 10,166,198. https://patents.google.com/patent/US10166198B2/en
- USPTO. (2019b). US Patent No. 10,485,921. https://patents.google.com/patent/US10485921B2/en
- USPTO. (2020). US Patent No. 10,857,104. https://patents.google.com/patent/US10857104B2/en
- USPTO. (2021). US Patent No. 11,103,514. https://patents.google.com/patent/US11103514B2/en
- USPTO. (2022). US Patent No. 11,282,921. https://patents.google.com/patent/US11282921B2/en
- Van de Wijgert, J. H., & Verwijs, M. C. (2020). Lactobacilli‐containing vaginal probiotics to cure or prevent bacterial or fungal vaginal dysbiosis: a systematic review and recommendations for future trial designs. BJOG: An International Journal of Obstetrics & Gynaecology, 127(2), 287-299. https://doi.org/10.1111/1471-0528.15870
- Vanhatalo, A., Blackwell, J. R., L’Heureux, J. E., Williams, D. W., Smith, A., van der Giezen, M., & Jones, A. M. (2018). Nitrate-responsive oral microbiome modulates nitric oxide homeostasis and blood pressure in humans. Free Radical Biology and Medicine, 124, 21-30. https://doi.org/10.1016/j.freeradbiomed.2018.05.078
- Vasquez, E. C., Pereira, T. M., Peotta, V. A., Baldo, M. P., & Campos-Toimil, M. (2019). Probiotics as beneficial dietary supplements to prevent and treat cardiovascular diseases: uncovering their impact on oxidative stress. Oxidative medicine and cellular longevity, 2019(1), 3086270. https://doi.org/10.1155/2019/3086270
- Versalovic, J., & Wilson, M. (2008). Therapeutic microbiology: probiotics and related strategies.
- Villena, M. J. M., Lara-Villoslada, F., Martínez, M. A. R., & Hernández, M. E. M. (2015). Development of gastro-resistant tablets for the protection and intestinal delivery of Lactobacillus fermentum CECT 5716. International journal of pharmaceutics, 487(1-2), 314-319.
- Wang, W., & Chen, X. (2018). Antibiotics-based fluorescent probes for selective labeling of Gram-negative and Gram-positive bacteria in living microbiotas. Science China Chemistry, 61, 792-796.
- Wang, W., Lin, L., Du, Y., Song, Y., Peng, X., Chen, X., & Yang, C. J. (2019). Assessing the viability of transplanted gut microbiota by sequential tagging with D-amino acid-based metabolic probes. Nature communications, 10(1), 1317.
- Wang, W., Zhu, Y., & Chen, X. (2017). Selective imaging of Gram-negative and Gram-positive microbiotas in the mouse gut. Biochemistry, 56(30), 3889-3893.
- Wei, Y., Yang, F., Wu, Q., Gao, J., Liu, W., Liu, C., & Tang, R. (2018). Protective effects of bifidobacterial strains against toxigenic Clostridium difficile. Frontiers in microbiology, 9, 888. https://doi.org/10.3389/fmicb.2018.00888
- Wells, J. M., & Mercenier, A. (2008). Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nature Reviews Microbiology, 6(5), 349-362. https://doi.org/10.1038/nrmicro1840
- Whitaker, W. R., Shepherd, E. S., & Sonnenburg, J. L. (2017). Tunable expression tools enable single-cell strain distinction in the gut microbiome. Cell, 169(3), 538-546.
- WIPO. (2020). WO Patent No. 2020/045638. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2020045638
- Wong, S. H., & Yu, J. (2019). Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nature reviews Gastroenterology & hepatology, 16(11), 690-704. https://doi.org/10.1038/ s41575-019-0209-8
- Yan, S., Tian, Z., Li, M., Li, B., & Cui, W. (2019). Effects of probiotic supplementation on the regulation of blood lipid levels in overweight or obese subjects: a meta-analysis. Food & function, 10(3), 1747-1759. https://doi.org/10.1039/C8FO02163E 5
- Yeung, T. W. (2016). Encapsulation of Probiotic Microorganisms in Food-Grade Hydrogel Microbeads for Improving Long-Term Storage and Oral Delivery.
- Zaib, S., Hayat, A., & Khan, I. (2024). Probiotics and their beneficial health effects. Mini Reviews in Medicinal Chemistry, 24(1), 110-125. https://doi.org/10.2174/1389557523666230608163823
- Zanjani, M. A. K., Tarzi, B. G., Sharifan, A., & Mohammadi, N. (2014). Microencapsulation of probiotics by calcium alginate-gelatinized starch with chitosan coating and evaluation of survival in simulated human gastro-intestinal condition. Iranian journal of pharmaceutical research: IJPR, 13(3), 843.
- Zhang, Z., Tang, H., Chen, P., Xie, H., & Tao, Y. (2019). Demystifying the manipulation of host immunity, metabolism, and extraintestinal tumors by the gut microbiome. Signal transduction and targeted therapy, 4(1), 41. https://doi.org/10.1038/s41392-019-0074-5
- Zhao, Z., Xu, S., Zhang, W., Wu, D., & Yang, G. (2022). Probiotic Escherichia coli NISSLE 1917 for inflammatory bowel disease applications. Food & Function, 13(11), 5914-5924.