Antibiotic Resistance: Retrospective, Concurrent, and Prospective Data
Abstract
Background: Over decades, antimicrobial medicines have been extensively used in industries such as agriculture and cattle husbandry, not only for the treatment of illnesses but also as preventative measures. Because of this extensive usage, bacteria have unintentionally developed antibiotic resistance (ABR), sometimes without the host's knowledge. It has made treating infectious infections more unclear and difficult.
Purpose: This review examines the patterns of antibiotic use and the types of bacteria that have developed resistance. It also explores their therapeutic mechanisms of action and the mechanisms behind resistance development. Additionally, the review discusses retrospective and concurrent data on ABR and proposes a prospective approach for the surveillance and monitoring of ABR globally.
Method: The review analyses both historical and current data on the global use of antimicrobial agents and their impact on antibiotic resistance. It assesses various strategies for the rational use of antibiotics, considering past patterns and current trends in ABR. The study also evaluates ongoing efforts to monitor and prevent the spread of ABR.
Result: Here, findings highlight the widespread and growing issue of antibiotic resistance, driven by both human and agricultural use of antibiotics. The review underscores the significance of continuous surveillance, monitoring, and the rational use of antimicrobial agents to combat the global threat of ABR, ensuring more effective management of infectious diseases.
Conclusion: Urgent global action is needed against antibiotic resistance because of both human and agricultural use. Improved surveillance and rational use of antibiotics are a prerequisite for preserving the efficacy of treatments available today and for maintaining public health. Strategic planning ahead will be the best management of infectious diseases.
- Page Number : 133-141
-
Published Date : 2023-11-10
- Keywords
Antibiotic Resistance; Rationale Use; Pollution; Antibiotics Use
- DOI Number
10.15415/jptrm.2023.112006 -
Authors
Bhavesh Dharmani, Sarita Jangra, Bisman Kaur, and Thakur Gurjeet Singh
References
- Alekshun, M. N., & Levy, S. B. (2007). Molecular mechanisms of antibacterial multidrug resistance. Cell, 128(6), 1037–1050. https://doi.org/10.1016/j.cell.2007.03.004
- Ben, Y., Fu, C., Hu, M., Liu, L., Wong, M. H., & Zheng, C. (2019). Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review. Environmental research, 169, 483–493. https://doi.org/10.1016/j.envres.2018.11.040
- Benzian, H., Beltrán-Aguilar, E., & Niederman, R. (2023). Global health threats are also oral health threats. Journal of the American Dental Association (1939), 154(5), 367–369. https://doi.org/10.1016/j.adaj.2023.01.007
- Berrazeg, M., Jeannot, K., NtsogoEnguéné, V. Y., Broutin, I., Loeffert, S., Fournier, D., & Plésiat, P. (2015). Mutations in β-Lactamase AmpC Increase Resistance of Pseudomonas aeruginosa Isolates to Antipseudomonal Cephalosporins. Antimicrobial agents and chemotherapy, 59(10), 6248–6255. https://doi.org/10.1128/AAC.00825-15
- Boucher, H. W., Talbot, G. H., Bradley, J. S., Edwards, J. E., Gilbert, D., Rice, L. B., Scheld, M., Spellberg, B., & Bartlett, J. (2009). Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America, 48(1), 1–12. https://doi.org/10.1086/595011
- Cepas, V., & Soto, S. M. (2020). Relationship between Virulence and Resistance among Gram-Negative Bacteria. Antibiotics (Basel, Switzerland), 9(10), 719. https://doi.org/10.3390/antibiotics9100719
- Dehbashi, S., Tahmasebi, H., Alikhani, M. Y., Keramat, F., & Arabestani, M. R. (2020). Distribution of Class B and Class A β-Lactamases in Clinical Strains of Pseudomonas aeruginosa: Comparison of Phenotypic Methods and High-Resolution Melting Analysis (HRMA) Assay. Infection and drug resistance, 13, 2037–2052. https://doi.org/10.2147/IDR.S255292
- Friedrich A. W. (2019). Control of hospital acquired infections and antimicrobial resistance in Europe: the way to go. Wiener medizinische Wochenschrift, 169(1), 25–30. https://doi.org/10.1007/s10354-018-0676-5
- Gaynes R. (2017). The Discovery of Penicillin—New Insights After More Than 75 Years of Clinical Use. Emerging Infectious Diseases, 23(5), 849–853. https://doi.org/10.3201/eid2305.161556
- Grundmann, H., Klugman, K. P., Walsh, T., Ramon-Pardo, P., Sigauque, B., Khan, W., Laxminarayan, R., Heddini, A., & Stelling, J. (2011). A framework for global surveillance of antibiotic resistance. Drug resistance updates: reviews and commentaries in antimicrobial and anticancer chemotherapy, 14(2), 79–87. https://doi.org/10.1016/j.drup.2011.02.007
- Hansen, S., Lewis, K., & Vulić, M. (2008). Role of global regulators and nucleotide metabolism in antibiotic tolerance in Escherichia coli. Antimicrobial agents and chemotherapy, 52(8), 2718–2726. https://doi.org/10.1128/AAC.00144-08
- Henrichfreise, B., Wiegand, I., Pfister, W., & Wiedemann, B. (2007). Resistance mechanisms of multiresistant Pseudomonas aeruginosa strains from Germany and correlation with hypermutation. Antimicrobial agents and chemotherapy, 51(11), 4062–4070. https://doi.org/10.1128/AAC.00148-07
- Hwang, W., & Yoon, S. S. (2019). Virulence Characteristics and an Action Mode of Antibiotic Resistance in Multidrug-Resistant Pseudomonas aeruginosa. Scientific reports, 9(1), 487. https://doi.org/10.1038/s41598-018-37422-9
- Iramiot, J. S., Kajumbula, H., Bazira, J., Kansiime, C., & Asiimwe, B. B. (2020). Antimicrobial resistance at the human-animal interface in the Pastoralist Communities of Kasese District, South Western Uganda. Scientific reports, 10(1), 14737. https://doi.org/10.1038/s41598-020-70517-w
- Jurado-Martín, I., Sainz-Mejías, M., & McClean, S. (2021). Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors. International journal of molecular sciences, 22(6), 3128. https://doi.org/10.3390/ijms22063128
- Keren, I., Shah, D., Spoering, A., Kaldalu, N., & Lewis, K. (2004). Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. Journal of bacteriology, 186(24), 8172–8180. https://doi.org/10.1128/JB.186.24.8172-8180.2004
- Lafleur, M. D., Qi, Q., & Lewis, K. (2010). Patients with long-term oral carriage harbor high-persister mutants of Candida albicans. Antimicrobial agents and chemotherapy, 54(1), 39–44. https://doi.org/10.1128/AAC.00860-09
- Levin, B. R., & Rozen, D. E. (2006). Non-inherited antibiotic resistance. Nature reviews. Microbiology, 4(7), 556–562. https://doi.org/10.1038/nrmicro1445
- Lewis K. (2013). Platforms for antibiotic discovery. Nature reviews. Drug discovery, 12(5), 371–387. https://doi.org/10.1038/nrd3975
- Malik, B., & Bhattacharyya, S. (2019). Antibiotic drug-resistance as a complex system driven by socio-economic growth and antibiotic misuse. Scientific reports, 9(1), 9788. https://doi.org/10.1038/s41598-019-46078-y
- Mancuso, G., Midiri, A., Gerace, E., & Biondo, C. (2021). Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens (Basel, Switzerland), 10(10), 1310. https://doi.org/10.3390/pathogens10101310
- Munita, J. M., & Arias, C. A. (2016). Mechanisms of Antibiotic Resistance. Microbiology spectrum, 4(2). https://doi.org/10.1128/microbiolspec.VMBF-0016-2015
- Ontong, J. C., Ozioma, N. F., Voravuthikunchai, S. P., &Chusri, S. (2021). Synergistic antibacterial effects of colistin in combination with aminoglycoside, carbapenems, cephalosporins, fluoroquinolones, tetracyclines, fosfomycin, and piperacillin on multidrug resistant Klebsiella pneumoniae isolates. PloS one, 16(1). https://doi.org/10.1371/journal.pone.0244673
- Poole K. (2005). Efflux-mediated antimicrobial resistance. The Journal of antimicrobial chemotherapy, 56(1), 20–51. https://doi.org/10.1093/jac/dki171
- Rehni, A. K., Singh, T. G., Jaggi, A. S., & Singh, N. (2008). Pharmacological preconditioning of the brain: a possible interplay between opioid and calcitonin gene related peptide transduction systems. Pharmacological reports: PR, 60(6), 904–913.
- Sharma, A., Mittal, A., Puri, V., Kumar, P. and Singh, I. (2020). Curcumin-loaded, alginate–gelatin composite fibers for wound healing applications. 3 Biotech, 10, 464. https://doi.org/10.1007/s13205-020-02453-5
- Sun, D., Jeannot, K., Xiao, Y., & Knapp, C. W. (2019). Editorial: Horizontal Gene Transfer Mediated Bacterial Antibiotic Resistance. Frontiers in microbiology, 10, 1933. https://doi.org/10.3389/fmicb.2019.01933
- Thakur, A. K., Chellappan, D. K., Dua, K., Mehta, M., Satija, S., & Singh, I. (2020). Patented therapeutic drug delivery strategies for targeting pulmonary diseases. Expert opinion on therapeutic patents, 30(5), 375–387. https://doi.org/10.1080/13543776.2020.1741547
- Thomas, C. M., & Nielsen, K. M. (2005). Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nature reviews. Microbiology, 3(9), 711–721. https://doi.org/10.1038/nrmicro1234
- Waksman, S. A. (1973). History of the word ‘antibiotic’. Journal of the history of medicine and allied sciences, 28(3), 284-286. https://doi.org/10.1093/jhmas/xxviii.3.284