Co-Crystallization: Approaches, Characterization and Applications in Drug Delivery

Abstract

Co-crystals play a significant role in the pharmaceutical sector. Medicinal co crystals are multicomponent systems with at least one active therapeutic ingredient and the rest of the constituents being pharmaceutically acceptable. Co crystallization of a medicinal material with a coformer is a potential and growing method for improving pharmaceutical performance in areas such as solubility, dissolution profile, pharmacokinetics, and stability.. A key barrier to developing novel API compounds is poor bioavailability and water solubility, which can limit the effectiveness of new drugs or prevent their approval for the market. In terms of the significant enhancement in solubility profiles compared to the single- active pharmaceutical ingredients, co-crystals provide a distinct and competitive edge over other traditional approaches.

  • Page Number : 141-149
  • Published Date : 2022-11-10
  • Keywords
    crystal engineering; co-crystals; co-formers; poorly water-soluble; Dissolution enhancement; hydrogen bonding.
  • DOI Number
    10.15415/jptrm.2022.102004
  • Authors
    • Sayali T. Patil
    • Monika S. Mane
    • Kshitija S. Desai
    • Satyajeet R. Jagdale
    • Pankaj A. Jadhav
    • Harshada A. Patil

References

  • Bijay Kumar Yadav, Atif Khursheed, & Rattan Deep Singh. (2019). Cocrystals: A Complete Review on Conventional and Novel Methods of Its Formation and Its Evaluation. Asian Journal of Pharmaceutical and Clinical Research, 68–74. http://dx.doi.org/10.22159/ajpcr.2019.v12i7.33648
  • Biscaia, I. F. B., Oliveira, P. R., Gomes, S. N., & Bernardi, L. S. (2021). Obtaining cocrystals by   reaction crystallization method: Pharmaceutical applications. In Pharmaceutics, 13(6).  https://doi.org/10.3390/pharmaceutics13060898
  • Blagden, N., de Matas, M., Gavan, P. T., & York, P. (2007). Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. In Advanced Drug Delivery Reviews, 59(7), 617–630. https://doi.org/10.1016/j.addr.2007.05.011
  • Buddhadev, S. S., & Garala, K. C. (2021). Pharmaceutical Cocrystals—A Review, 14. https://doi.org/10.3390/proceedings2020062014
  • Erriguible, A., Neurohr, C., Revelli, A. L., Laugier, S., Fevotte, G., & Subra-Paternault, P. (2015). Cocrystallization induced by compressed CO2 as antisolvent: Simulation of a batch process for the estimation of nucleation and growth parameters. Journal of Supercritical Fluids, 98, 194–203. https://doi.org/10.1016/j.supflu.2014.12.013
  • Fontana, F., Figueiredo, P., Zhang, P., Hirvonen, J. T., Liu, D., & Santos, H. A. (2018). Production of pure drug nanocrystals and nano co-crystals by confinement methods. In Advanced Drug Delivery Reviews, 131, 3–21. https://doi.org/10.1016/j.addr.2018.05.002
  • Guo, M., Sun, X., Chen, J., & Cai, T. (2021). Pharmaceutical cocrystals: A review of preparations, physicochemical properties and applications. In Acta Pharmaceutica Sinica B 11(8), 2537–2564. https://doi.org/10.1016/j.apsb.2021.03.030
  • Karimi-Jafari, M., Padrela, L., Walker, G. M., & Croker, D. M. (2018). Creating cocrystals: A review of pharmaceutical cocrystal preparation routes and applications. In Crystal Growth and Design, 18(10), 6370–6387. https://doi.org/10.1021/acs.cgd.8b00933
  • Kulkarni, D., Pekamwar, S., Santosh, S., & Kulkarni, M. D. (2019). Crystal Engineering an Approach for Solubility Enhancement of Poorly Water-Soluble Drugs Crystallographic Modification Approach for Solubility Enhancement View project Crystal Engineering an Approach for Solubility Enhancement of Poorly Water-Soluble Drugs. Journal of Medical and Pharmaceutical Innovation, 6. https://www.researchgate.net/publication/344801748
  • Kumar, A., & Nanda, A. (2021). In-silico methods of cocrystal screening: A review on tools for rational design of pharmaceutical cocrystals. In Journal of Drug Delivery Science and Technology, 63. https://doi.org/10.1016/j.jddst.2021.102527
  • Lu, M. (2015). Chapter 5. Continuous Co-crystallization of Poorly Soluble Active Pharmaceutical Ingredients to enhance dissolution Pharmaceutical Applications of Hot-melt Extrusion View project Drug Polymorphism based on Melt Crystallization. View project. https://www.researchgate.net/publication/280558640
  • Matthew L. Peterson, Framingham, MA; Michael J.Zaworotko, Tampa, FL; Brian Moulton, Providence, RI; Nair Rodriguez-Hornedo, Ann Arbor, MI 2011. PHARMACEUTICAL CO-CRYSTAL composition US7927613 patent.
  • Nascimento, A. L. C. S., Fernandes, R. P., Charpentier, M. D., ter Horst, J. H., Caires, F. J., & Chorilli, M. (2021). Co-crystals of non-steroidal anti-inflammatory drugs (NSAIDs): Insight toward formation, methods, and drug enhancement. Particuology, 58, 227–241. https://doi.org/10.1016/j.partic.2021.03.015
  • Ngilirabanga, J. B., & Samsodien, H. (2021). Pharmaceutical co‐crystal: An alternative strategy for enhanced physicochemical properties and drug synergy. Nano Select, 2(3), 512–526. https://doi.org/10.1002/nano.202000201
  • Nguyen, T. A., Pham, V. N. T., Le, H. T., Chau, D. H., Mittova, V. O., Tr Nguyen, L. T., Dinh, D. A., Nhan Hao, T. v., & Mittova, I. Y. (2019). Crystal structure and magnetic properties of LaFe1-xNixO3 nanomaterials prepared via a simple co-precipitation method. Ceramics International, 45(17), 21768–21772. https://doi.org/10.1016/j.ceramint.2019.07.178
  • Örn Almarsson, Shrewsbury, MA; Magali Bourghol Hickey, Medford, MA Patel, D. J., & Puranik, P. K. (2020). Pharmaceutical Co-crystal: An Emerging Technique to enhance Physicochemical properties of drugs. International Journal of ChemTech Research, 13(3), 283–290. https://doi.org/10.20902/ijctr.2019.130326
  • Pawar, N., Saha, A., Nandan, N., & Parambil, J. v. (2021). Solution cocrystallization: A scalable approach for cocrystal production. In Crystals, 11(3). https://doi.org/10.3390/cryst11030303
  • Rathi, R., Kushwaha, R., Goyal, A. and Singh, I. (2022). Oxaliplatin- Flavones Pharmaceutical co-crystal-CN111205332 A: patent spotlight. Pharmaceutical Patent Analyst, 11(5), 147-154.
  • Rathi, R, Kushwaha, R., Goyal, A. and Singh, I., 2022. A Review on Cocrystals of Herbal Bioactives for Solubility Enhancement: Preparation methods and Characterization Techniques. Crystal Growth and Design, 22(3), 2023-2042.
  • Samineni, R., Chimakurthy, J., Sumalatha, K., Dharani, G., Rachana, J., Manasa, K., & Anitha, P. (2019). Co-crystals: A review of recent trends in co crystallization of bcs class ii drugs. In Research Journal of Pharmacy and Technology, 12(7), 3117–3124. https://doi.org/10.5958/0974-360X.2019.00527.4
  • Schultheiss, N., & Newman, A. (2009). Pharmaceutical cocrystals and their physicochemical properties. In Crystal Growth and Design, 9(6), 2950–2967. https://doi.org/10.1021/cg900129f
  • Setyawan, D., Paramanandana, A., Erfadrin, V. E., Sari, R., & Paramita, D. P. (2020). Compression force effect on characteristics of loratadine-succinic acid cocrystal prepared by slurry method. Journal of Research in Pharmacy, 24(3), 410–415. https://doi.org/10.35333/jrp.2020.163
  • Soares, F. L. F., & Carneiro, R. L. (2014). Evaluation of analytical tools and multivariate methods for quantification of co-former crystals in ibuprofen-nicotinamide co-crystals. Journal of Pharmaceutical and Biomedical Analysis, 89, 166–175. https://doi.org/10.1016/j.jpba.2013.11.005
  • Tatiane, C., M.,, Angélica, B., G., Juliana,R., Simone, G.,  C., Thiago, C.,(2018) Cocrystallization as a novel approach to enhance the transdermal administration of meloxicam. European Journal of Pharmaceutical Sciences, 128, 184-190. https://doi.org/10.1016/j.ejps.2018.07.038
  • Thakuria, R., Delori, A., Jones, W., Lipert, M. P., Roy, L., & Rodríguez-Hornedo, N. (2013). Pharmaceutical cocrystals and poorly soluble drugs. In International Journal of Pharmaceutics, 453(1), 101–125.  https://doi.org/10.1016/j.ijpharm.2012.10.043